Matches in SemOpenAlex for { <https://semopenalex.org/work/W3143654485> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3143654485 endingPage "82" @default.
- W3143654485 startingPage "74" @default.
- W3143654485 abstract "To prevent possible accidents,the study of data-driven analytics to predict hidden dangers in cloud service-based intelligent industrial production management has been the subject of increasing interest recently.A machine learning algorithm that uses timeliness managing extreme learning machine is utilized in this article to achieve the above prediction.Compared with traditional learning algorithms,extreme learning machine(ELM) exhibits high performance because of its unique feature of a high generalization capability at a fast learning speed.Timeliness managing ELM is proposed by incorporating timeliness management scheme into ELM.When using the timeliness managing ELM scheme to predict hidden dangers,newly incremental data could be added prior to the historical data to maximize the contribution of the newly incremental training data,because the incremental data may be able to contribute reasonable weights to represent the current production situation according to practical analysis of accidents in some industrial productions.Experimental results from a coal mine show that the use of timeliness managing ELM can improve the prediction accuracy of hidden dangers with better stability compared with other similar machine learning methods." @default.
- W3143654485 created "2021-04-13" @default.
- W3143654485 creator A5000124742 @default.
- W3143654485 creator A5000891818 @default.
- W3143654485 creator A5005342922 @default.
- W3143654485 creator A5017377137 @default.
- W3143654485 creator A5032245741 @default.
- W3143654485 creator A5033992808 @default.
- W3143654485 creator A5041127942 @default.
- W3143654485 creator A5058824666 @default.
- W3143654485 creator A5058874752 @default.
- W3143654485 creator A5061867550 @default.
- W3143654485 creator A5067464611 @default.
- W3143654485 date "2016-01-01" @default.
- W3143654485 modified "2023-09-23" @default.
- W3143654485 title "A Novel Hidden Danger Prediction Method in CloudBased Intelligent Industrial Production Management Using Timeliness Managing Extreme Learning Machine" @default.
- W3143654485 hasPublicationYear "2016" @default.
- W3143654485 type Work @default.
- W3143654485 sameAs 3143654485 @default.
- W3143654485 citedByCount "0" @default.
- W3143654485 crossrefType "journal-article" @default.
- W3143654485 hasAuthorship W3143654485A5000124742 @default.
- W3143654485 hasAuthorship W3143654485A5000891818 @default.
- W3143654485 hasAuthorship W3143654485A5005342922 @default.
- W3143654485 hasAuthorship W3143654485A5017377137 @default.
- W3143654485 hasAuthorship W3143654485A5032245741 @default.
- W3143654485 hasAuthorship W3143654485A5033992808 @default.
- W3143654485 hasAuthorship W3143654485A5041127942 @default.
- W3143654485 hasAuthorship W3143654485A5058824666 @default.
- W3143654485 hasAuthorship W3143654485A5058874752 @default.
- W3143654485 hasAuthorship W3143654485A5061867550 @default.
- W3143654485 hasAuthorship W3143654485A5067464611 @default.
- W3143654485 hasConcept C112972136 @default.
- W3143654485 hasConcept C119857082 @default.
- W3143654485 hasConcept C124101348 @default.
- W3143654485 hasConcept C134306372 @default.
- W3143654485 hasConcept C139719470 @default.
- W3143654485 hasConcept C154945302 @default.
- W3143654485 hasConcept C162324750 @default.
- W3143654485 hasConcept C177148314 @default.
- W3143654485 hasConcept C2778348673 @default.
- W3143654485 hasConcept C2780150128 @default.
- W3143654485 hasConcept C33923547 @default.
- W3143654485 hasConcept C41008148 @default.
- W3143654485 hasConcept C50644808 @default.
- W3143654485 hasConcept C77618280 @default.
- W3143654485 hasConceptScore W3143654485C112972136 @default.
- W3143654485 hasConceptScore W3143654485C119857082 @default.
- W3143654485 hasConceptScore W3143654485C124101348 @default.
- W3143654485 hasConceptScore W3143654485C134306372 @default.
- W3143654485 hasConceptScore W3143654485C139719470 @default.
- W3143654485 hasConceptScore W3143654485C154945302 @default.
- W3143654485 hasConceptScore W3143654485C162324750 @default.
- W3143654485 hasConceptScore W3143654485C177148314 @default.
- W3143654485 hasConceptScore W3143654485C2778348673 @default.
- W3143654485 hasConceptScore W3143654485C2780150128 @default.
- W3143654485 hasConceptScore W3143654485C33923547 @default.
- W3143654485 hasConceptScore W3143654485C41008148 @default.
- W3143654485 hasConceptScore W3143654485C50644808 @default.
- W3143654485 hasConceptScore W3143654485C77618280 @default.
- W3143654485 hasIssue "7" @default.
- W3143654485 hasLocation W31436544851 @default.
- W3143654485 hasOpenAccess W3143654485 @default.
- W3143654485 hasPrimaryLocation W31436544851 @default.
- W3143654485 hasRelatedWork W2478750904 @default.
- W3143654485 hasRelatedWork W2512015856 @default.
- W3143654485 hasRelatedWork W2591981030 @default.
- W3143654485 hasRelatedWork W2737744949 @default.
- W3143654485 hasRelatedWork W2746053853 @default.
- W3143654485 hasRelatedWork W2804692431 @default.
- W3143654485 hasRelatedWork W2903696004 @default.
- W3143654485 hasRelatedWork W2971625752 @default.
- W3143654485 hasRelatedWork W2978452345 @default.
- W3143654485 hasRelatedWork W3011301256 @default.
- W3143654485 hasRelatedWork W3011306439 @default.
- W3143654485 hasRelatedWork W3012260042 @default.
- W3143654485 hasRelatedWork W3041623653 @default.
- W3143654485 hasRelatedWork W3112098658 @default.
- W3143654485 hasRelatedWork W3125387313 @default.
- W3143654485 hasRelatedWork W3129449288 @default.
- W3143654485 hasRelatedWork W3132578139 @default.
- W3143654485 hasRelatedWork W3185124620 @default.
- W3143654485 hasRelatedWork W3197020432 @default.
- W3143654485 hasRelatedWork W3020176969 @default.
- W3143654485 isParatext "false" @default.
- W3143654485 isRetracted "false" @default.
- W3143654485 magId "3143654485" @default.
- W3143654485 workType "article" @default.