Matches in SemOpenAlex for { <https://semopenalex.org/work/W3143732994> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W3143732994 abstract "The vision for sewage treatment plants is being revised and they are no longer considered as pollutant removing facilities but rather as water resources recovery facilities (WRRFs). However, the newly adopted bioprocesses in WRRFs are not fully understood from the microbiological and kinetic perspectives. Thus, large variations in the outputs of the kinetics-based numerical models are evident. In this research, data driven models (DDM) are proposed as a robust alternative towards modelling emerging bioprocesses. Methano- trophs are multi-use bacterium that can play key role in revalorizing the biogas in WRRFs, and thus, a Multi-Layer Perceptron Artificial Neural Network (ANN) model was developed and optimized to simulate the cultivation of mixed methanotrophic culture considering multiple environmental conditions. The influence of the input variables on the outputs was assessed through developing and analyzing several different ANN model configurations. The constructed ANN models demonstrate that the indirect and complex relationships between the inputs and outputs can be accurately considered prior to the full understanding of the physical or mathematical processes. Furthermore, it was found that ANN models can be used to better understand and rank the influence of different input variables (i.e., the physical parameters that influence methanotrophs) on the microbial activity. Methanotrophic-based bioprocesses are complex due to the interactions between the gaseous, liquid and solid phases. Yet, for the first time, this study successfully utilized DDM to model methanotrophic-based bioprocesses. The findings of this research suggest that DDM are a powerful, alternative modeling tool that can be used to model emerging bioprocesses towards their implementation in WRRFs." @default.
- W3143732994 created "2021-04-13" @default.
- W3143732994 creator A5008987011 @default.
- W3143732994 creator A5045104833 @default.
- W3143732994 creator A5053111667 @default.
- W3143732994 creator A5054268940 @default.
- W3143732994 creator A5054407193 @default.
- W3143732994 creator A5081397173 @default.
- W3143732994 date "2021-01-01" @default.
- W3143732994 modified "2023-09-24" @default.
- W3143732994 title "Data Driven Models as A Powerful Tool to Simulate Emerging Bioprocesses: An Artificial Neural Network Model to Describe Methanotrophic Microbial Activity" @default.
- W3143732994 doi "https://doi.org/10.3808/jei.202000446" @default.
- W3143732994 hasPublicationYear "2021" @default.
- W3143732994 type Work @default.
- W3143732994 sameAs 3143732994 @default.
- W3143732994 citedByCount "3" @default.
- W3143732994 countsByYear W31437329942022 @default.
- W3143732994 crossrefType "journal-article" @default.
- W3143732994 hasAuthorship W3143732994A5008987011 @default.
- W3143732994 hasAuthorship W3143732994A5045104833 @default.
- W3143732994 hasAuthorship W3143732994A5053111667 @default.
- W3143732994 hasAuthorship W3143732994A5054268940 @default.
- W3143732994 hasAuthorship W3143732994A5054407193 @default.
- W3143732994 hasAuthorship W3143732994A5081397173 @default.
- W3143732994 hasBestOaLocation W31437329942 @default.
- W3143732994 hasConcept C119857082 @default.
- W3143732994 hasConcept C127413603 @default.
- W3143732994 hasConcept C183696295 @default.
- W3143732994 hasConcept C186060115 @default.
- W3143732994 hasConcept C41008148 @default.
- W3143732994 hasConcept C50644808 @default.
- W3143732994 hasConcept C60908668 @default.
- W3143732994 hasConcept C86803240 @default.
- W3143732994 hasConceptScore W3143732994C119857082 @default.
- W3143732994 hasConceptScore W3143732994C127413603 @default.
- W3143732994 hasConceptScore W3143732994C183696295 @default.
- W3143732994 hasConceptScore W3143732994C186060115 @default.
- W3143732994 hasConceptScore W3143732994C41008148 @default.
- W3143732994 hasConceptScore W3143732994C50644808 @default.
- W3143732994 hasConceptScore W3143732994C60908668 @default.
- W3143732994 hasConceptScore W3143732994C86803240 @default.
- W3143732994 hasLocation W31437329941 @default.
- W3143732994 hasLocation W31437329942 @default.
- W3143732994 hasOpenAccess W3143732994 @default.
- W3143732994 hasPrimaryLocation W31437329941 @default.
- W3143732994 hasRelatedWork W1968892634 @default.
- W3143732994 hasRelatedWork W2066475746 @default.
- W3143732994 hasRelatedWork W2292855655 @default.
- W3143732994 hasRelatedWork W2555850415 @default.
- W3143732994 hasRelatedWork W2898381535 @default.
- W3143732994 hasRelatedWork W2993459930 @default.
- W3143732994 hasRelatedWork W3042796155 @default.
- W3143732994 hasRelatedWork W3179716570 @default.
- W3143732994 hasRelatedWork W4200356503 @default.
- W3143732994 hasRelatedWork W4233002550 @default.
- W3143732994 isParatext "false" @default.
- W3143732994 isRetracted "false" @default.
- W3143732994 magId "3143732994" @default.
- W3143732994 workType "article" @default.