Matches in SemOpenAlex for { <https://semopenalex.org/work/W3143973553> ?p ?o ?g. }
- W3143973553 endingPage "560" @default.
- W3143973553 startingPage "560" @default.
- W3143973553 abstract "Amidation is an important post translational modification where a peptide ends with an amide group (–NH2) rather than carboxyl group (–COOH). These amidated peptides are less sensitive to proteolytic degradation with extended half-life in the bloodstream. Amides are used in different industries like pharmaceuticals, natural products, and biologically active compounds. The in-vivo, ex-vivo, and in-vitro identification of amidation sites is a costly and time-consuming but important task to study the physiochemical properties of amidated peptides. A less costly and efficient alternative is to supplement wet lab experiments with accurate computational models. Hence, an urgent need exists for efficient and accurate computational models to easily identify amidated sites in peptides. In this study, we present a new predictor, based on deep neural networks (DNN) and Pseudo Amino Acid Compositions (PseAAC), to learn efficient, task-specific, and effective representations for valine amidation site identification. Well-known DNN architectures are used in this contribution to learn peptide sequence representations and classify peptide chains. Of all the different DNN based predictors developed in this study, Convolutional neural network-based model showed the best performance surpassing all other DNN based models and reported literature contributions. The proposed model will supplement in-vivo methods and help scientists to determine valine amidation very efficiently and accurately, which in turn will enhance understanding of the valine amidation in different biological processes." @default.
- W3143973553 created "2021-04-13" @default.
- W3143973553 creator A5026582680 @default.
- W3143973553 creator A5038354395 @default.
- W3143973553 creator A5079557375 @default.
- W3143973553 creator A5082354668 @default.
- W3143973553 date "2021-03-29" @default.
- W3143973553 modified "2023-10-02" @default.
- W3143973553 title "iAmideV-Deep: Valine Amidation Site Prediction in Proteins Using Deep Learning and Pseudo Amino Acid Compositions" @default.
- W3143973553 cites W1498436455 @default.
- W3143973553 cites W1966716734 @default.
- W3143973553 cites W1979648586 @default.
- W3143973553 cites W2029426756 @default.
- W3143973553 cites W2034070267 @default.
- W3143973553 cites W2042571564 @default.
- W3143973553 cites W2064675550 @default.
- W3143973553 cites W2075727666 @default.
- W3143973553 cites W2103903366 @default.
- W3143973553 cites W2107878631 @default.
- W3143973553 cites W2141818629 @default.
- W3143973553 cites W2158698691 @default.
- W3143973553 cites W2167666169 @default.
- W3143973553 cites W2231559741 @default.
- W3143973553 cites W2259227729 @default.
- W3143973553 cites W2328176404 @default.
- W3143973553 cites W2553732885 @default.
- W3143973553 cites W2559711527 @default.
- W3143973553 cites W2578837795 @default.
- W3143973553 cites W2592079754 @default.
- W3143973553 cites W2593480391 @default.
- W3143973553 cites W2598761670 @default.
- W3143973553 cites W2604370633 @default.
- W3143973553 cites W2607294979 @default.
- W3143973553 cites W2612224265 @default.
- W3143973553 cites W2744385871 @default.
- W3143973553 cites W2749697459 @default.
- W3143973553 cites W2753779625 @default.
- W3143973553 cites W2759893831 @default.
- W3143973553 cites W2765910446 @default.
- W3143973553 cites W2767196078 @default.
- W3143973553 cites W2782483562 @default.
- W3143973553 cites W2793860782 @default.
- W3143973553 cites W2800333284 @default.
- W3143973553 cites W2803011470 @default.
- W3143973553 cites W2891100097 @default.
- W3143973553 cites W2897596315 @default.
- W3143973553 cites W2899105530 @default.
- W3143973553 cites W2899372475 @default.
- W3143973553 cites W2908486698 @default.
- W3143973553 cites W2919115771 @default.
- W3143973553 cites W2999309192 @default.
- W3143973553 cites W3004222371 @default.
- W3143973553 cites W3033500825 @default.
- W3143973553 cites W3097133774 @default.
- W3143973553 cites W3104199920 @default.
- W3143973553 cites W3109724560 @default.
- W3143973553 cites W3112601518 @default.
- W3143973553 cites W3136918052 @default.
- W3143973553 doi "https://doi.org/10.3390/sym13040560" @default.
- W3143973553 hasPublicationYear "2021" @default.
- W3143973553 type Work @default.
- W3143973553 sameAs 3143973553 @default.
- W3143973553 citedByCount "18" @default.
- W3143973553 countsByYear W31439735532021 @default.
- W3143973553 countsByYear W31439735532022 @default.
- W3143973553 countsByYear W31439735532023 @default.
- W3143973553 crossrefType "journal-article" @default.
- W3143973553 hasAuthorship W3143973553A5026582680 @default.
- W3143973553 hasAuthorship W3143973553A5038354395 @default.
- W3143973553 hasAuthorship W3143973553A5079557375 @default.
- W3143973553 hasAuthorship W3143973553A5082354668 @default.
- W3143973553 hasBestOaLocation W31439735531 @default.
- W3143973553 hasConcept C108583219 @default.
- W3143973553 hasConcept C116834253 @default.
- W3143973553 hasConcept C119857082 @default.
- W3143973553 hasConcept C154945302 @default.
- W3143973553 hasConcept C185592680 @default.
- W3143973553 hasConcept C21951064 @default.
- W3143973553 hasConcept C2777573094 @default.
- W3143973553 hasConcept C2779281246 @default.
- W3143973553 hasConcept C41008148 @default.
- W3143973553 hasConcept C50644808 @default.
- W3143973553 hasConcept C515207424 @default.
- W3143973553 hasConcept C55493867 @default.
- W3143973553 hasConcept C59822182 @default.
- W3143973553 hasConcept C70721500 @default.
- W3143973553 hasConcept C81363708 @default.
- W3143973553 hasConcept C86803240 @default.
- W3143973553 hasConceptScore W3143973553C108583219 @default.
- W3143973553 hasConceptScore W3143973553C116834253 @default.
- W3143973553 hasConceptScore W3143973553C119857082 @default.
- W3143973553 hasConceptScore W3143973553C154945302 @default.
- W3143973553 hasConceptScore W3143973553C185592680 @default.
- W3143973553 hasConceptScore W3143973553C21951064 @default.
- W3143973553 hasConceptScore W3143973553C2777573094 @default.
- W3143973553 hasConceptScore W3143973553C2779281246 @default.
- W3143973553 hasConceptScore W3143973553C41008148 @default.
- W3143973553 hasConceptScore W3143973553C50644808 @default.