Matches in SemOpenAlex for { <https://semopenalex.org/work/W3144027679> ?p ?o ?g. }
- W3144027679 endingPage "101" @default.
- W3144027679 startingPage "90" @default.
- W3144027679 abstract "Of growing amount of food waste, the integrated food waste and waste water treatment was regarded as one of the efficient modeling method. However, the load of food waste to the conventional waste treatment process might lead to the high concentration of total nitrogen(T-N) impact on the effluent water quality. The objective of this study is to establish two machine learning models—artificial neural networks(ANNs) and support vector machines(SVMs), in order to predict 1-day interval T-N concentration of effluent from a wastewater treatment plant in Ulsan, Korea. Daily water quality data and meteorological data were used and the performance of both models was evaluated in terms of the coefficient of determination(R~2), Nash–Sutcliff efficiency(NSE), relative efficiency criteria(d rel). Additionally, Latin-Hypercube one-factor-at-a-time(LH-OAT) and a pattern search algorithm were applied to sensitivity analysis and model parameter optimization, respectively. Results showed that both models could be effectively applied to the 1-day interval prediction of T-N concentration of effluent. SVM model showed a higher prediction accuracy in the training stage and similar result in the validation stage.However, the sensitivity analysis demonstrated that the ANN model was a superior model for 1-day interval T-N concentration prediction in terms of the cause-and-effect relationship between T-N concentration and modeling input values to integrated food waste and waste water treatment. This study suggested the efficient and robust nonlinear time-series modeling method for an early prediction of the water quality of integrated food waste and waste water treatment process." @default.
- W3144027679 created "2021-04-13" @default.
- W3144027679 creator A5011728393 @default.
- W3144027679 creator A5014068004 @default.
- W3144027679 creator A5028615584 @default.
- W3144027679 creator A5031719145 @default.
- W3144027679 creator A5038852914 @default.
- W3144027679 creator A5038852974 @default.
- W3144027679 creator A5041041408 @default.
- W3144027679 creator A5045716733 @default.
- W3144027679 creator A5055011319 @default.
- W3144027679 creator A5055050458 @default.
- W3144027679 creator A5063320081 @default.
- W3144027679 creator A5068864965 @default.
- W3144027679 creator A5071917998 @default.
- W3144027679 creator A5081750805 @default.
- W3144027679 creator A5082899955 @default.
- W3144027679 creator A5088318665 @default.
- W3144027679 creator A5089595314 @default.
- W3144027679 creator A5060384997 @default.
- W3144027679 date "2015-01-01" @default.
- W3144027679 modified "2023-09-26" @default.
- W3144027679 title "Prediction of effluent concentration in a wastewater treatment plant using machine learning models" @default.
- W3144027679 hasPublicationYear "2015" @default.
- W3144027679 type Work @default.
- W3144027679 sameAs 3144027679 @default.
- W3144027679 citedByCount "0" @default.
- W3144027679 crossrefType "journal-article" @default.
- W3144027679 hasAuthorship W3144027679A5011728393 @default.
- W3144027679 hasAuthorship W3144027679A5014068004 @default.
- W3144027679 hasAuthorship W3144027679A5028615584 @default.
- W3144027679 hasAuthorship W3144027679A5031719145 @default.
- W3144027679 hasAuthorship W3144027679A5038852914 @default.
- W3144027679 hasAuthorship W3144027679A5038852974 @default.
- W3144027679 hasAuthorship W3144027679A5041041408 @default.
- W3144027679 hasAuthorship W3144027679A5045716733 @default.
- W3144027679 hasAuthorship W3144027679A5055011319 @default.
- W3144027679 hasAuthorship W3144027679A5055050458 @default.
- W3144027679 hasAuthorship W3144027679A5060384997 @default.
- W3144027679 hasAuthorship W3144027679A5063320081 @default.
- W3144027679 hasAuthorship W3144027679A5068864965 @default.
- W3144027679 hasAuthorship W3144027679A5071917998 @default.
- W3144027679 hasAuthorship W3144027679A5081750805 @default.
- W3144027679 hasAuthorship W3144027679A5082899955 @default.
- W3144027679 hasAuthorship W3144027679A5088318665 @default.
- W3144027679 hasAuthorship W3144027679A5089595314 @default.
- W3144027679 hasConcept C105795698 @default.
- W3144027679 hasConcept C119857082 @default.
- W3144027679 hasConcept C12267149 @default.
- W3144027679 hasConcept C127413603 @default.
- W3144027679 hasConcept C147455438 @default.
- W3144027679 hasConcept C18903297 @default.
- W3144027679 hasConcept C19499675 @default.
- W3144027679 hasConcept C20820323 @default.
- W3144027679 hasConcept C21200559 @default.
- W3144027679 hasConcept C24326235 @default.
- W3144027679 hasConcept C2780797713 @default.
- W3144027679 hasConcept C33923547 @default.
- W3144027679 hasConcept C39432304 @default.
- W3144027679 hasConcept C41008148 @default.
- W3144027679 hasConcept C50644808 @default.
- W3144027679 hasConcept C86803240 @default.
- W3144027679 hasConcept C87717796 @default.
- W3144027679 hasConcept C94061648 @default.
- W3144027679 hasConceptScore W3144027679C105795698 @default.
- W3144027679 hasConceptScore W3144027679C119857082 @default.
- W3144027679 hasConceptScore W3144027679C12267149 @default.
- W3144027679 hasConceptScore W3144027679C127413603 @default.
- W3144027679 hasConceptScore W3144027679C147455438 @default.
- W3144027679 hasConceptScore W3144027679C18903297 @default.
- W3144027679 hasConceptScore W3144027679C19499675 @default.
- W3144027679 hasConceptScore W3144027679C20820323 @default.
- W3144027679 hasConceptScore W3144027679C21200559 @default.
- W3144027679 hasConceptScore W3144027679C24326235 @default.
- W3144027679 hasConceptScore W3144027679C2780797713 @default.
- W3144027679 hasConceptScore W3144027679C33923547 @default.
- W3144027679 hasConceptScore W3144027679C39432304 @default.
- W3144027679 hasConceptScore W3144027679C41008148 @default.
- W3144027679 hasConceptScore W3144027679C50644808 @default.
- W3144027679 hasConceptScore W3144027679C86803240 @default.
- W3144027679 hasConceptScore W3144027679C87717796 @default.
- W3144027679 hasConceptScore W3144027679C94061648 @default.
- W3144027679 hasIssue "6" @default.
- W3144027679 hasLocation W31440276791 @default.
- W3144027679 hasOpenAccess W3144027679 @default.
- W3144027679 hasPrimaryLocation W31440276791 @default.
- W3144027679 hasRelatedWork W1965030571 @default.
- W3144027679 hasRelatedWork W1965842223 @default.
- W3144027679 hasRelatedWork W1984697447 @default.
- W3144027679 hasRelatedWork W2049125224 @default.
- W3144027679 hasRelatedWork W2076871268 @default.
- W3144027679 hasRelatedWork W2078475310 @default.
- W3144027679 hasRelatedWork W2080061349 @default.
- W3144027679 hasRelatedWork W2132342693 @default.
- W3144027679 hasRelatedWork W2169550890 @default.
- W3144027679 hasRelatedWork W2227314414 @default.
- W3144027679 hasRelatedWork W2272215660 @default.
- W3144027679 hasRelatedWork W2291145630 @default.