Matches in SemOpenAlex for { <https://semopenalex.org/work/W3144042476> ?p ?o ?g. }
- W3144042476 endingPage "295203" @default.
- W3144042476 startingPage "295203" @default.
- W3144042476 abstract "Abstract The quantum confinement effect resulting from size reduction drastically alters the electronic structure and optical properties of optoelectronic materials. Quantum confinement in nanomaterials can be efficiently controlled by morphology variation combined characteristics of nanomaterials, such as their size, shape, and spatial organization. In this study, considering indium arsenide (InAs) in tetrahedral semiconductors as an example, we demonstrated the controllable morphology evolution of InAs nanostructures by tuning the growth conditions. We used the atomistic pseudopotential method to investigate the morphology-dependent electronic and optical properties of InAs nanostructures: tapered and uniform nanostructures, including the absorption spectra, single-particle energy levels, distribution and overlap integral of band-edge states, and exciton binding energies. Compared with uniform nanomaterials, a weaker quantum confinement effect was observed in the tapered nanomaterials, because of which tapered InAs nanostructures have a smaller bandgap, larger separation of photoinduced carriers, and smaller exciton binding energy. The absorption spectra of InAs nanostructures also exhibit strong morphology dependence. Our results indicate that morphology engineering can be exploited as a potential approach for modulating the electronic and optoelectronic properties of nanomaterials." @default.
- W3144042476 created "2021-04-13" @default.
- W3144042476 creator A5009085226 @default.
- W3144042476 creator A5016805696 @default.
- W3144042476 creator A5024792434 @default.
- W3144042476 creator A5033814924 @default.
- W3144042476 creator A5063154761 @default.
- W3144042476 date "2021-04-30" @default.
- W3144042476 modified "2023-09-27" @default.
- W3144042476 title "Electronic and optical properties of tapered tetrahedral semiconductor nanocrystals" @default.
- W3144042476 cites W1513209253 @default.
- W3144042476 cites W1968296977 @default.
- W3144042476 cites W1970587745 @default.
- W3144042476 cites W1970946340 @default.
- W3144042476 cites W1974284716 @default.
- W3144042476 cites W1975301362 @default.
- W3144042476 cites W1977146029 @default.
- W3144042476 cites W1983441042 @default.
- W3144042476 cites W1984772856 @default.
- W3144042476 cites W1987416224 @default.
- W3144042476 cites W1991862719 @default.
- W3144042476 cites W1995580456 @default.
- W3144042476 cites W1996771722 @default.
- W3144042476 cites W2007651342 @default.
- W3144042476 cites W2008498840 @default.
- W3144042476 cites W2009231263 @default.
- W3144042476 cites W2009542643 @default.
- W3144042476 cites W2009546747 @default.
- W3144042476 cites W2010008330 @default.
- W3144042476 cites W2016131208 @default.
- W3144042476 cites W2016389642 @default.
- W3144042476 cites W2017826880 @default.
- W3144042476 cites W2033787520 @default.
- W3144042476 cites W2046261097 @default.
- W3144042476 cites W2058146022 @default.
- W3144042476 cites W2063468757 @default.
- W3144042476 cites W2064104693 @default.
- W3144042476 cites W2068032993 @default.
- W3144042476 cites W2069403235 @default.
- W3144042476 cites W2074188625 @default.
- W3144042476 cites W2074823474 @default.
- W3144042476 cites W2084281725 @default.
- W3144042476 cites W2085777462 @default.
- W3144042476 cites W2090141637 @default.
- W3144042476 cites W2091751356 @default.
- W3144042476 cites W2092228335 @default.
- W3144042476 cites W2093065511 @default.
- W3144042476 cites W2103596514 @default.
- W3144042476 cites W2111852168 @default.
- W3144042476 cites W2119691274 @default.
- W3144042476 cites W2122727913 @default.
- W3144042476 cites W2136359657 @default.
- W3144042476 cites W2141753454 @default.
- W3144042476 cites W2144805203 @default.
- W3144042476 cites W2146790506 @default.
- W3144042476 cites W2157599717 @default.
- W3144042476 cites W2166766857 @default.
- W3144042476 cites W2167222993 @default.
- W3144042476 cites W2168261528 @default.
- W3144042476 cites W2171792674 @default.
- W3144042476 cites W2313078544 @default.
- W3144042476 cites W2319533351 @default.
- W3144042476 cites W2508382250 @default.
- W3144042476 cites W2528893755 @default.
- W3144042476 cites W2610237543 @default.
- W3144042476 cites W2785669522 @default.
- W3144042476 cites W2821765373 @default.
- W3144042476 cites W2916121570 @default.
- W3144042476 cites W2991668814 @default.
- W3144042476 cites W3043665197 @default.
- W3144042476 cites W3047557133 @default.
- W3144042476 cites W3100328673 @default.
- W3144042476 cites W3106208832 @default.
- W3144042476 cites W3116238715 @default.
- W3144042476 cites W359444536 @default.
- W3144042476 doi "https://doi.org/10.1088/1361-6528/abf68f" @default.
- W3144042476 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33836511" @default.
- W3144042476 hasPublicationYear "2021" @default.
- W3144042476 type Work @default.
- W3144042476 sameAs 3144042476 @default.
- W3144042476 citedByCount "2" @default.
- W3144042476 countsByYear W31440424762021 @default.
- W3144042476 countsByYear W31440424762023 @default.
- W3144042476 crossrefType "journal-article" @default.
- W3144042476 hasAuthorship W3144042476A5009085226 @default.
- W3144042476 hasAuthorship W3144042476A5016805696 @default.
- W3144042476 hasAuthorship W3144042476A5024792434 @default.
- W3144042476 hasAuthorship W3144042476A5033814924 @default.
- W3144042476 hasAuthorship W3144042476A5063154761 @default.
- W3144042476 hasConcept C108225325 @default.
- W3144042476 hasConcept C121332964 @default.
- W3144042476 hasConcept C124657808 @default.
- W3144042476 hasConcept C132378524 @default.
- W3144042476 hasConcept C138631740 @default.
- W3144042476 hasConcept C161935440 @default.
- W3144042476 hasConcept C171250308 @default.
- W3144042476 hasConcept C175854130 @default.
- W3144042476 hasConcept C17729963 @default.