Matches in SemOpenAlex for { <https://semopenalex.org/work/W3144047752> ?p ?o ?g. }
- W3144047752 endingPage "1" @default.
- W3144047752 startingPage "1" @default.
- W3144047752 abstract "Label-specific features serve as an effective strategy to learn from multi-label data, where a set of features encoding specific characteristics of each label are generated to help induce multi-label classification model. Existing approaches work by taking the two-stage strategy, where the procedure of label-specific feature generation is independent of the follow-up procedure of classification model induction. Intuitively, the performance of resulting classification model may be suboptimal due to the decoupling nature of the two-stage strategy. In this paper, a wrapped learning approach is proposed which aims to jointly perform label-specific feature generation and classification model induction. Specifically, one (kernelized) linear model is learned for each label where label-specific features are simultaneously generated within an embedded feature space via empirical loss minimization and pairwise label correlation regularization. Comparative studies over a total of sixteen benchmark data sets clearly validate the effectiveness of the wrapped strategy in exploiting label-specific features for multi-label classification." @default.
- W3144047752 created "2021-04-13" @default.
- W3144047752 creator A5030694953 @default.
- W3144047752 creator A5079083101 @default.
- W3144047752 date "2021-01-01" @default.
- W3144047752 modified "2023-09-23" @default.
- W3144047752 title "Multi-Label Classification with Label-Specific Feature Generation: A Wrapped Approach" @default.
- W3144047752 cites W1999954155 @default.
- W3144047752 cites W2029517229 @default.
- W3144047752 cites W2052684427 @default.
- W3144047752 cites W2072707985 @default.
- W3144047752 cites W2074909580 @default.
- W3144047752 cites W2083488428 @default.
- W3144047752 cites W2090630554 @default.
- W3144047752 cites W2114315281 @default.
- W3144047752 cites W2138290126 @default.
- W3144047752 cites W2148484209 @default.
- W3144047752 cites W2153635508 @default.
- W3144047752 cites W2153758664 @default.
- W3144047752 cites W2156935079 @default.
- W3144047752 cites W2163776610 @default.
- W3144047752 cites W2166912588 @default.
- W3144047752 cites W2295077356 @default.
- W3144047752 cites W2343038205 @default.
- W3144047752 cites W2519969774 @default.
- W3144047752 cites W2522701101 @default.
- W3144047752 cites W2588628126 @default.
- W3144047752 cites W2604675517 @default.
- W3144047752 cites W2605572715 @default.
- W3144047752 cites W2610086231 @default.
- W3144047752 cites W2747053038 @default.
- W3144047752 cites W2767245172 @default.
- W3144047752 cites W2767252287 @default.
- W3144047752 cites W2787932447 @default.
- W3144047752 cites W2797920008 @default.
- W3144047752 cites W2808424844 @default.
- W3144047752 cites W2811296027 @default.
- W3144047752 cites W2904572180 @default.
- W3144047752 cites W2913978442 @default.
- W3144047752 cites W2932399282 @default.
- W3144047752 cites W2942759156 @default.
- W3144047752 cites W2966027244 @default.
- W3144047752 cites W2969932435 @default.
- W3144047752 cites W2980360232 @default.
- W3144047752 cites W3002895058 @default.
- W3144047752 cites W3008516105 @default.
- W3144047752 cites W3026750456 @default.
- W3144047752 cites W3035665101 @default.
- W3144047752 cites W3041489214 @default.
- W3144047752 cites W3099852169 @default.
- W3144047752 cites W3115263260 @default.
- W3144047752 cites W3132705271 @default.
- W3144047752 cites W639274388 @default.
- W3144047752 doi "https://doi.org/10.1109/tpami.2021.3070215" @default.
- W3144047752 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33788680" @default.
- W3144047752 hasPublicationYear "2021" @default.
- W3144047752 type Work @default.
- W3144047752 sameAs 3144047752 @default.
- W3144047752 citedByCount "8" @default.
- W3144047752 countsByYear W31440477522022 @default.
- W3144047752 countsByYear W31440477522023 @default.
- W3144047752 crossrefType "journal-article" @default.
- W3144047752 hasAuthorship W3144047752A5030694953 @default.
- W3144047752 hasAuthorship W3144047752A5079083101 @default.
- W3144047752 hasConcept C119857082 @default.
- W3144047752 hasConcept C124101348 @default.
- W3144047752 hasConcept C13280743 @default.
- W3144047752 hasConcept C138885662 @default.
- W3144047752 hasConcept C153180895 @default.
- W3144047752 hasConcept C154945302 @default.
- W3144047752 hasConcept C184898388 @default.
- W3144047752 hasConcept C185798385 @default.
- W3144047752 hasConcept C205649164 @default.
- W3144047752 hasConcept C2776401178 @default.
- W3144047752 hasConcept C2776482837 @default.
- W3144047752 hasConcept C41008148 @default.
- W3144047752 hasConcept C41895202 @default.
- W3144047752 hasConcept C83665646 @default.
- W3144047752 hasConceptScore W3144047752C119857082 @default.
- W3144047752 hasConceptScore W3144047752C124101348 @default.
- W3144047752 hasConceptScore W3144047752C13280743 @default.
- W3144047752 hasConceptScore W3144047752C138885662 @default.
- W3144047752 hasConceptScore W3144047752C153180895 @default.
- W3144047752 hasConceptScore W3144047752C154945302 @default.
- W3144047752 hasConceptScore W3144047752C184898388 @default.
- W3144047752 hasConceptScore W3144047752C185798385 @default.
- W3144047752 hasConceptScore W3144047752C205649164 @default.
- W3144047752 hasConceptScore W3144047752C2776401178 @default.
- W3144047752 hasConceptScore W3144047752C2776482837 @default.
- W3144047752 hasConceptScore W3144047752C41008148 @default.
- W3144047752 hasConceptScore W3144047752C41895202 @default.
- W3144047752 hasConceptScore W3144047752C83665646 @default.
- W3144047752 hasFunder F4320321001 @default.
- W3144047752 hasLocation W31440477521 @default.
- W3144047752 hasLocation W31440477522 @default.
- W3144047752 hasOpenAccess W3144047752 @default.
- W3144047752 hasPrimaryLocation W31440477521 @default.
- W3144047752 hasRelatedWork W1914651075 @default.