Matches in SemOpenAlex for { <https://semopenalex.org/work/W3144054239> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3144054239 endingPage "83" @default.
- W3144054239 startingPage "79" @default.
- W3144054239 abstract "Abstract Nowadays, digital information has increased exponentially in every field to such an extent that it generates huge amounts of electronic data, namely Big Data. In the field of Artificial Intelligence, Machine Learning can be exploited in order to transform the large amount of information to improve decision-making. We retrospectively evaluated the data collected from 2016 to 2018, using the database of approximately 4000 rehabilitation hospital discharges (SDO) of the Latium Region (Italy). Three models of machine learning algorithms were considered: Support of vector machine; Neural networks; Random forests. Applying this model, the estimate of the average error is 9.077, and specifically, considering the distinction between orthopedic and neurological patients, the average error obtained is 7.65 for orthopedic and 10.73 for neurological patients. SDO information flow can be used to represent and quantify the potential inadequacy and inefficiency of rehabilitation hospitalizations, although there are limitations such as the absence of description of pre-pathological conditions, changes in health status from the beginning to the end of hospitalization, specific short- and long-term outcomes of rehabilitation, services provided during hospitalization, as well as psycho-social variables. Furthermore, information from wearable devices capable of providing clinical parameters and movement data could be integrated into the dataset." @default.
- W3144054239 created "2021-04-13" @default.
- W3144054239 creator A5074974289 @default.
- W3144054239 date "2021-04-02" @default.
- W3144054239 modified "2023-09-23" @default.
- W3144054239 title "Application of machine learning techniques to physical and rehabilitative medicine." @default.
- W3144054239 doi "https://doi.org/10.7416/ai.2021.2444" @default.
- W3144054239 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33797549" @default.
- W3144054239 hasPublicationYear "2021" @default.
- W3144054239 type Work @default.
- W3144054239 sameAs 3144054239 @default.
- W3144054239 citedByCount "0" @default.
- W3144054239 crossrefType "journal-article" @default.
- W3144054239 hasAuthorship W3144054239A5074974289 @default.
- W3144054239 hasConcept C119857082 @default.
- W3144054239 hasConcept C12267149 @default.
- W3144054239 hasConcept C124101348 @default.
- W3144054239 hasConcept C149635348 @default.
- W3144054239 hasConcept C150594956 @default.
- W3144054239 hasConcept C154945302 @default.
- W3144054239 hasConcept C162324750 @default.
- W3144054239 hasConcept C169258074 @default.
- W3144054239 hasConcept C175444787 @default.
- W3144054239 hasConcept C1862650 @default.
- W3144054239 hasConcept C202444582 @default.
- W3144054239 hasConcept C2778818304 @default.
- W3144054239 hasConcept C2778869765 @default.
- W3144054239 hasConcept C33923547 @default.
- W3144054239 hasConcept C41008148 @default.
- W3144054239 hasConcept C50644808 @default.
- W3144054239 hasConcept C71924100 @default.
- W3144054239 hasConcept C75684735 @default.
- W3144054239 hasConcept C9652623 @default.
- W3144054239 hasConcept C99508421 @default.
- W3144054239 hasConceptScore W3144054239C119857082 @default.
- W3144054239 hasConceptScore W3144054239C12267149 @default.
- W3144054239 hasConceptScore W3144054239C124101348 @default.
- W3144054239 hasConceptScore W3144054239C149635348 @default.
- W3144054239 hasConceptScore W3144054239C150594956 @default.
- W3144054239 hasConceptScore W3144054239C154945302 @default.
- W3144054239 hasConceptScore W3144054239C162324750 @default.
- W3144054239 hasConceptScore W3144054239C169258074 @default.
- W3144054239 hasConceptScore W3144054239C175444787 @default.
- W3144054239 hasConceptScore W3144054239C1862650 @default.
- W3144054239 hasConceptScore W3144054239C202444582 @default.
- W3144054239 hasConceptScore W3144054239C2778818304 @default.
- W3144054239 hasConceptScore W3144054239C2778869765 @default.
- W3144054239 hasConceptScore W3144054239C33923547 @default.
- W3144054239 hasConceptScore W3144054239C41008148 @default.
- W3144054239 hasConceptScore W3144054239C50644808 @default.
- W3144054239 hasConceptScore W3144054239C71924100 @default.
- W3144054239 hasConceptScore W3144054239C75684735 @default.
- W3144054239 hasConceptScore W3144054239C9652623 @default.
- W3144054239 hasConceptScore W3144054239C99508421 @default.
- W3144054239 hasIssue "1" @default.
- W3144054239 hasLocation W31440542391 @default.
- W3144054239 hasOpenAccess W3144054239 @default.
- W3144054239 hasPrimaryLocation W31440542391 @default.
- W3144054239 hasRelatedWork W2779560987 @default.
- W3144054239 hasRelatedWork W2802978587 @default.
- W3144054239 hasRelatedWork W2884238114 @default.
- W3144054239 hasRelatedWork W2885530851 @default.
- W3144054239 hasRelatedWork W2895549878 @default.
- W3144054239 hasRelatedWork W2909092775 @default.
- W3144054239 hasRelatedWork W2913940640 @default.
- W3144054239 hasRelatedWork W2972731760 @default.
- W3144054239 hasRelatedWork W3018874840 @default.
- W3144054239 hasRelatedWork W3021448296 @default.
- W3144054239 hasRelatedWork W3023309646 @default.
- W3144054239 hasRelatedWork W3035933769 @default.
- W3144054239 hasRelatedWork W3082334799 @default.
- W3144054239 hasRelatedWork W3082462227 @default.
- W3144054239 hasRelatedWork W3097673055 @default.
- W3144054239 hasRelatedWork W3109732498 @default.
- W3144054239 hasRelatedWork W3127275138 @default.
- W3144054239 hasRelatedWork W3157996826 @default.
- W3144054239 hasRelatedWork W3195747400 @default.
- W3144054239 hasRelatedWork W3199899573 @default.
- W3144054239 hasVolume "34" @default.
- W3144054239 isParatext "false" @default.
- W3144054239 isRetracted "false" @default.
- W3144054239 magId "3144054239" @default.
- W3144054239 workType "article" @default.