Matches in SemOpenAlex for { <https://semopenalex.org/work/W3144057494> ?p ?o ?g. }
- W3144057494 endingPage "12814" @default.
- W3144057494 startingPage "12795" @default.
- W3144057494 abstract "Deep-learning-based 3D face recognition methods have developed vigorously in recent years, while the potential of these methods is being exploited in more and more scenarios. In this paper, an end-to-end deep learning network entitled Sur3dNet-Face for point-cloud-based 3D face recognition is proposed. The method uses PointNet, which is a successful point cloud classification solution but performs unexpectedly in face recognition, as the backbone. To adapt the backbone to 3D face recognition, modifications in network architecture and a few-data guided learning framework based on Gaussian process morphable model is supplemented. Instead of mass data in multiple datasets for training, our method takes only Spring2003 subset of FRGC v2.0 for training which contains 943 facial scans and the network is well trained with such a small amount of real data. The processing time to generate face representation is less than 0.15 s. Without fine-tuning on the test set, the Rank-1 Recognition Rate (RR1) is achieved as follows: 98.85% on FRGC v2.0 dataset and 99.33% on Bosphorus dataset, which proves the effectiveness and the potentiality of our method. When facing scenarios with limited resource, the proposed method is expected to give a competitive performance." @default.
- W3144057494 created "2021-04-13" @default.
- W3144057494 creator A5014201978 @default.
- W3144057494 creator A5018229316 @default.
- W3144057494 creator A5065969815 @default.
- W3144057494 date "2022-02-21" @default.
- W3144057494 modified "2023-09-30" @default.
- W3144057494 title "Few-data guided learning upon end-to-end point cloud network for 3D face recognition" @default.
- W3144057494 cites W1545641654 @default.
- W3144057494 cites W1566413196 @default.
- W3144057494 cites W1819285909 @default.
- W3144057494 cites W1857250878 @default.
- W3144057494 cites W1934776504 @default.
- W3144057494 cites W1993398660 @default.
- W3144057494 cites W1998808035 @default.
- W3144057494 cites W2017035240 @default.
- W3144057494 cites W2027320904 @default.
- W3144057494 cites W2059697919 @default.
- W3144057494 cites W2071035657 @default.
- W3144057494 cites W2087642411 @default.
- W3144057494 cites W2092463796 @default.
- W3144057494 cites W2104300442 @default.
- W3144057494 cites W2116888754 @default.
- W3144057494 cites W2121647436 @default.
- W3144057494 cites W2130105873 @default.
- W3144057494 cites W2137659841 @default.
- W3144057494 cites W2140593870 @default.
- W3144057494 cites W2207409364 @default.
- W3144057494 cites W2237250383 @default.
- W3144057494 cites W2310705318 @default.
- W3144057494 cites W2354701395 @default.
- W3144057494 cites W2467139031 @default.
- W3144057494 cites W2508514794 @default.
- W3144057494 cites W2548498729 @default.
- W3144057494 cites W2560609797 @default.
- W3144057494 cites W2605701576 @default.
- W3144057494 cites W2700273814 @default.
- W3144057494 cites W2744972750 @default.
- W3144057494 cites W2807723206 @default.
- W3144057494 cites W2906534391 @default.
- W3144057494 cites W2962890008 @default.
- W3144057494 cites W2963409406 @default.
- W3144057494 cites W2963466847 @default.
- W3144057494 cites W2963858339 @default.
- W3144057494 cites W2963865528 @default.
- W3144057494 cites W2964296522 @default.
- W3144057494 cites W2965115183 @default.
- W3144057494 cites W2969985801 @default.
- W3144057494 cites W2983098675 @default.
- W3144057494 cites W2990613095 @default.
- W3144057494 cites W3034046166 @default.
- W3144057494 cites W3043683372 @default.
- W3144057494 cites W3091074842 @default.
- W3144057494 cites W3099206234 @default.
- W3144057494 cites W3101531717 @default.
- W3144057494 cites W3101998545 @default.
- W3144057494 cites W3108339833 @default.
- W3144057494 cites W3133373026 @default.
- W3144057494 cites W820315868 @default.
- W3144057494 doi "https://doi.org/10.1007/s11042-022-12211-9" @default.
- W3144057494 hasPublicationYear "2022" @default.
- W3144057494 type Work @default.
- W3144057494 sameAs 3144057494 @default.
- W3144057494 citedByCount "5" @default.
- W3144057494 countsByYear W31440574942022 @default.
- W3144057494 countsByYear W31440574942023 @default.
- W3144057494 crossrefType "journal-article" @default.
- W3144057494 hasAuthorship W3144057494A5014201978 @default.
- W3144057494 hasAuthorship W3144057494A5018229316 @default.
- W3144057494 hasAuthorship W3144057494A5065969815 @default.
- W3144057494 hasBestOaLocation W31440574942 @default.
- W3144057494 hasConcept C108583219 @default.
- W3144057494 hasConcept C111919701 @default.
- W3144057494 hasConcept C119857082 @default.
- W3144057494 hasConcept C131979681 @default.
- W3144057494 hasConcept C144024400 @default.
- W3144057494 hasConcept C153180895 @default.
- W3144057494 hasConcept C154945302 @default.
- W3144057494 hasConcept C16910744 @default.
- W3144057494 hasConcept C191070858 @default.
- W3144057494 hasConcept C199360897 @default.
- W3144057494 hasConcept C2779304628 @default.
- W3144057494 hasConcept C31258907 @default.
- W3144057494 hasConcept C31510193 @default.
- W3144057494 hasConcept C36289849 @default.
- W3144057494 hasConcept C41008148 @default.
- W3144057494 hasConcept C4641261 @default.
- W3144057494 hasConcept C58489278 @default.
- W3144057494 hasConcept C74296488 @default.
- W3144057494 hasConcept C79974875 @default.
- W3144057494 hasConcept C88796919 @default.
- W3144057494 hasConceptScore W3144057494C108583219 @default.
- W3144057494 hasConceptScore W3144057494C111919701 @default.
- W3144057494 hasConceptScore W3144057494C119857082 @default.
- W3144057494 hasConceptScore W3144057494C131979681 @default.
- W3144057494 hasConceptScore W3144057494C144024400 @default.
- W3144057494 hasConceptScore W3144057494C153180895 @default.
- W3144057494 hasConceptScore W3144057494C154945302 @default.