Matches in SemOpenAlex for { <https://semopenalex.org/work/W3144233634> ?p ?o ?g. }
- W3144233634 endingPage "5805" @default.
- W3144233634 startingPage "5791" @default.
- W3144233634 abstract "Globally, over 200 million people are chronically exposed to arsenic (As) and/or manganese (Mn) from drinking water. We used machine-learning (ML) boosted regression tree (BRT) models to predict high As (>10 μg/L) and Mn (>300 μg/L) in groundwater from the glacial aquifer system (GLAC), which spans 25 states in the northern United States and provides drinking water to 30 million people. Our BRT models’ predictor variables (PVs) included recently developed three-dimensional estimates of a suite of groundwater age metrics, redox condition, and pH. We also demonstrated a successful approach to significantly improve ML prediction sensitivity for imbalanced data sets (small percentage of high values). We present predictions of the probability of high As and high Mn concentrations in groundwater, and uncertainty, at two nonuniform depth surfaces that represent moving median depths of GLAC domestic and public supply wells within the three-dimensional model domain. Predicted high likelihood of anoxic condition (high iron or low dissolved oxygen), predicted pH, relative well depth, several modeled groundwater age metrics, and hydrologic position were all PVs retained in both models; however, PV importance and influence differed between the models. High-As and high-Mn groundwater was predicted with high likelihood over large portions of the central part of the GLAC." @default.
- W3144233634 created "2021-04-13" @default.
- W3144233634 creator A5001031625 @default.
- W3144233634 creator A5018443521 @default.
- W3144233634 creator A5021755720 @default.
- W3144233634 creator A5036224467 @default.
- W3144233634 creator A5063280324 @default.
- W3144233634 creator A5073339485 @default.
- W3144233634 creator A5076479959 @default.
- W3144233634 date "2021-04-06" @default.
- W3144233634 modified "2023-10-11" @default.
- W3144233634 title "Machine-Learning Predictions of High Arsenic and High Manganese at Drinking Water Depths of the Glacial Aquifer System, Northern Continental United States" @default.
- W3144233634 cites W1251722559 @default.
- W3144233634 cites W1559006583 @default.
- W3144233634 cites W1612473128 @default.
- W3144233634 cites W1629974261 @default.
- W3144233634 cites W18275426 @default.
- W3144233634 cites W1884131190 @default.
- W3144233634 cites W194485640 @default.
- W3144233634 cites W1964763348 @default.
- W3144233634 cites W1966153945 @default.
- W3144233634 cites W1976119057 @default.
- W3144233634 cites W1976214358 @default.
- W3144233634 cites W1977707491 @default.
- W3144233634 cites W1978895830 @default.
- W3144233634 cites W1983063890 @default.
- W3144233634 cites W1983557247 @default.
- W3144233634 cites W1984580491 @default.
- W3144233634 cites W1985199820 @default.
- W3144233634 cites W1985879113 @default.
- W3144233634 cites W1987336797 @default.
- W3144233634 cites W1988687886 @default.
- W3144233634 cites W1999331408 @default.
- W3144233634 cites W2016964177 @default.
- W3144233634 cites W2023896700 @default.
- W3144233634 cites W2025367111 @default.
- W3144233634 cites W2031033587 @default.
- W3144233634 cites W2032132273 @default.
- W3144233634 cites W2034110090 @default.
- W3144233634 cites W2036396275 @default.
- W3144233634 cites W2039203839 @default.
- W3144233634 cites W2039242149 @default.
- W3144233634 cites W2041301037 @default.
- W3144233634 cites W2054784259 @default.
- W3144233634 cites W2066180056 @default.
- W3144233634 cites W2067578189 @default.
- W3144233634 cites W2070164699 @default.
- W3144233634 cites W2077086892 @default.
- W3144233634 cites W2083270778 @default.
- W3144233634 cites W2087896190 @default.
- W3144233634 cites W2089471959 @default.
- W3144233634 cites W2092090385 @default.
- W3144233634 cites W2092180712 @default.
- W3144233634 cites W2105897307 @default.
- W3144233634 cites W2107059050 @default.
- W3144233634 cites W2113068976 @default.
- W3144233634 cites W2130885950 @default.
- W3144233634 cites W2135695572 @default.
- W3144233634 cites W2143534022 @default.
- W3144233634 cites W2149602337 @default.
- W3144233634 cites W2156182980 @default.
- W3144233634 cites W2156488673 @default.
- W3144233634 cites W2172162694 @default.
- W3144233634 cites W2212837844 @default.
- W3144233634 cites W2237884911 @default.
- W3144233634 cites W2258991753 @default.
- W3144233634 cites W2259843377 @default.
- W3144233634 cites W2311522546 @default.
- W3144233634 cites W2315211858 @default.
- W3144233634 cites W2344485563 @default.
- W3144233634 cites W2346554829 @default.
- W3144233634 cites W2436675107 @default.
- W3144233634 cites W2466788594 @default.
- W3144233634 cites W2483291582 @default.
- W3144233634 cites W2558529668 @default.
- W3144233634 cites W2560399496 @default.
- W3144233634 cites W2576945578 @default.
- W3144233634 cites W2585099006 @default.
- W3144233634 cites W2590538195 @default.
- W3144233634 cites W2601331994 @default.
- W3144233634 cites W2614866367 @default.
- W3144233634 cites W2621614687 @default.
- W3144233634 cites W2685342612 @default.
- W3144233634 cites W2735883826 @default.
- W3144233634 cites W2736196951 @default.
- W3144233634 cites W2739623790 @default.
- W3144233634 cites W2739881626 @default.
- W3144233634 cites W2741810390 @default.
- W3144233634 cites W2743751242 @default.
- W3144233634 cites W2749465180 @default.
- W3144233634 cites W2758631235 @default.
- W3144233634 cites W2765613654 @default.
- W3144233634 cites W2789480239 @default.
- W3144233634 cites W2792706633 @default.
- W3144233634 cites W2800383764 @default.
- W3144233634 cites W2885729996 @default.
- W3144233634 cites W2898085152 @default.
- W3144233634 cites W2902220643 @default.