Matches in SemOpenAlex for { <https://semopenalex.org/work/W3144484828> ?p ?o ?g. }
- W3144484828 abstract "Arithmetic combinatorics, or additive combinatorics, is a fast developing area of research combining elements of number theory, combinatorics, harmonic analysis and ergodic theory. Its arguably best-known result, and the one that brought it to global prominence, is the proof by Ben Green and Terence Tao of the long-standing conjecture that primes contain arbitrarily long arithmetic progressions. There are many accounts and expositions of the Green-Tao theorem, including the articles by Kra [119] and Tao [182] in the Bulletin. The purpose of the present article is to survey a broader, highly interconnected network of questions and results, built over the decades and spanning several areas of mathematics, of which the Green-Tao theorem is a famous descendant. An old geometric problem lies at the heart of key conjectures in harmonic analysis. A major result in partial differential equations invokes combinatorial theorems on intersecting lines and circles. An unexpected argument points harmonic analysts towards additive number theory, with consequences that could have hardly been anticipated. We will not try to give a comprehensive survey of harmonic analysis, combinatorics, or additive number theory. We will not even be able to do full justice to our specific areas of focus, instead referring the reader to the more complete expositions and surveys listed in Section 7. Our goal here is to emphasize the connections between these areas; we will thus concentrate on relatively few problems, chosen as much for their importance to their fields as for their links to each other. The article is written from the point of view of an analyst who, in the course of her work, was gradually introduced to the questions discussed here and found them fascinating. We hope that the reader will enjoy a taste of this experience." @default.
- W3144484828 created "2021-04-13" @default.
- W3144484828 creator A5030328693 @default.
- W3144484828 date "2007-01-01" @default.
- W3144484828 modified "2023-09-27" @default.
- W3144484828 title "FROM HARMONIC ANALYSIS TO ARITHMETIC COMBINATORICS" @default.
- W3144484828 cites W1488916590 @default.
- W3144484828 cites W1490170438 @default.
- W3144484828 cites W1532154335 @default.
- W3144484828 cites W1533760152 @default.
- W3144484828 cites W1585722514 @default.
- W3144484828 cites W1586623789 @default.
- W3144484828 cites W1587704419 @default.
- W3144484828 cites W1602822892 @default.
- W3144484828 cites W183130383 @default.
- W3144484828 cites W1932410633 @default.
- W3144484828 cites W1964246724 @default.
- W3144484828 cites W1965488421 @default.
- W3144484828 cites W1970366772 @default.
- W3144484828 cites W1972038344 @default.
- W3144484828 cites W1975951981 @default.
- W3144484828 cites W1977460154 @default.
- W3144484828 cites W1979653193 @default.
- W3144484828 cites W1983449215 @default.
- W3144484828 cites W1983741744 @default.
- W3144484828 cites W1987786354 @default.
- W3144484828 cites W1990524943 @default.
- W3144484828 cites W1991135809 @default.
- W3144484828 cites W1994704368 @default.
- W3144484828 cites W1995043396 @default.
- W3144484828 cites W1996045241 @default.
- W3144484828 cites W1996216417 @default.
- W3144484828 cites W1996922551 @default.
- W3144484828 cites W1997917721 @default.
- W3144484828 cites W2002611642 @default.
- W3144484828 cites W2003068124 @default.
- W3144484828 cites W2003149186 @default.
- W3144484828 cites W2009185855 @default.
- W3144484828 cites W2018858611 @default.
- W3144484828 cites W2019996951 @default.
- W3144484828 cites W2020644686 @default.
- W3144484828 cites W2023098069 @default.
- W3144484828 cites W2030001787 @default.
- W3144484828 cites W2030877936 @default.
- W3144484828 cites W2040334599 @default.
- W3144484828 cites W2041409085 @default.
- W3144484828 cites W2041824078 @default.
- W3144484828 cites W2041965026 @default.
- W3144484828 cites W2043805949 @default.
- W3144484828 cites W2046312929 @default.
- W3144484828 cites W2056515521 @default.
- W3144484828 cites W2057677006 @default.
- W3144484828 cites W2060626432 @default.
- W3144484828 cites W2067467106 @default.
- W3144484828 cites W2068713872 @default.
- W3144484828 cites W2070357196 @default.
- W3144484828 cites W2070621953 @default.
- W3144484828 cites W2071743058 @default.
- W3144484828 cites W2072077626 @default.
- W3144484828 cites W2073093847 @default.
- W3144484828 cites W2079378932 @default.
- W3144484828 cites W2080921518 @default.
- W3144484828 cites W2085878382 @default.
- W3144484828 cites W2091022463 @default.
- W3144484828 cites W2091075816 @default.
- W3144484828 cites W2091329824 @default.
- W3144484828 cites W2092559863 @default.
- W3144484828 cites W2093968575 @default.
- W3144484828 cites W2094901481 @default.
- W3144484828 cites W2096324031 @default.
- W3144484828 cites W2108900323 @default.
- W3144484828 cites W2110859486 @default.
- W3144484828 cites W2113144141 @default.
- W3144484828 cites W2115811550 @default.
- W3144484828 cites W2131309238 @default.
- W3144484828 cites W2132134025 @default.
- W3144484828 cites W2136910207 @default.
- W3144484828 cites W2141304880 @default.
- W3144484828 cites W2142443207 @default.
- W3144484828 cites W2153710291 @default.
- W3144484828 cites W2156454890 @default.
- W3144484828 cites W2157615867 @default.
- W3144484828 cites W2158226503 @default.
- W3144484828 cites W2164198530 @default.
- W3144484828 cites W2166961358 @default.
- W3144484828 cites W2167472711 @default.
- W3144484828 cites W2168138462 @default.
- W3144484828 cites W2183692121 @default.
- W3144484828 cites W2319149236 @default.
- W3144484828 cites W2327509254 @default.
- W3144484828 cites W2330659347 @default.
- W3144484828 cites W2335400162 @default.
- W3144484828 cites W2342433841 @default.
- W3144484828 cites W2467417640 @default.
- W3144484828 cites W2524359929 @default.
- W3144484828 cites W2680897312 @default.
- W3144484828 cites W2951912736 @default.
- W3144484828 cites W2964093643 @default.
- W3144484828 cites W2964103393 @default.
- W3144484828 cites W3022344599 @default.