Matches in SemOpenAlex for { <https://semopenalex.org/work/W3144561387> ?p ?o ?g. }
Showing items 1 to 45 of
45
with 100 items per page.
- W3144561387 abstract "Understanding the structure and magnetic behavior is crucial for optimization of nanocomposite magnets with high magnetic energy products. Many contributing factors such as phase composition, grain size distribution and specific domain configurations reflect a fine balance of magnetic energies at nanometer scale. For instance, magnetocrystalline anisotropy of grains and their orientations, degree of exchange coupling of magnetically soft and hard phases and specific energy of domain walls in a material. Modern microscopy, including Lorentz microscopy, is powerful tool for visualization and microstructure studies of nanocomposite magnets. However, direct interpretation of magnetically sensitive Fresnel/Foucault images for nanomagnets is usually problematic, if not impossible, because of the complex image contrast due to small grain size and sophisticated domain structure. Recently we developed an imaging technique based on Lorentz phase microscopy [l-4], which allows bypassing many of these problems and get quantitative information through magnetic flux mapping at nanometer scale resolution with a magnetically calibrated TEM [5]. This is our first report on application of this technique to nanocomposite magnets. In the present study we examine a nanocomposite magnet of nominal composition Nd{sub 2}Fe{sub 14+{delta}}B{sub 1.45} (14+{delta}=23.3, i.e. ''hard'' Nd{sub 2}Fe{sub 14}B-phase and 47.8 wt% of ''soft'' {alpha}-Fe phase ({delta}=9.3)), produced by Magnequenchmore » International, Inc. Conventional TEM/HREM study (Fig. 1-2) suggests that material has a bimodal grain-size distribution with maximum at d{sub max}=25 nm for Nd{sub 2}Fe{sub 14}B phase and d{sub max} = 15 nm for {alpha}-Fe phase (Fig.1c, Fig.2) in agreement with synchrotron X-ray studies (d{sub max}=23.5 nm for Nd{sub 2}Fe{sub 14}B [6]). Lattice parameters for Nd{sub 2}Fe{sub 14}B phase are a=8.80 and c=12.2 {angstrom}, as derived from SAED ring patterns (Fig.1a), again in good agreement with X-ray data. The fraction of large particles (of size 250 nm) is less then 57% of total amount of particles (Fig.1c, arrowed). Our new imaging technique allows visualization of domain structure in nanomagnets (Fig.3) in color code. Both projected magnetization and magnetic flux maps (Fig.3) reconstructed using Lorentz phase microscopy suggest a complex domain structure with an average domain size about 100x(100{approx}200) nm{sup 2} in a non-magnetized state. Large particles of darker contrast (of size {ge}50 nm, presumably {alpha}-Fe precipitates) or clusters of such particles act as effective concentrators for magnetic flux in nanocomposite matrix. The measured relative local-flux concentration by factor of 1.28 agrees well with theoretical ratio B{sub sat}({alpha}-Fe)/B{sub sat}(Nd{sub 2}Fe{sub 14}B)=1.31, strongly suggesting clustering of {alpha}-Fe particles that may have a detrimental effect on nanomagnet coercivity. Other smaller {alpha}-Fe particles (< 25 nm) do not disturb flux distribution, hence, they are magnetically coupled to Nd-Fe-B matrix grains as it was postulated by spring-exchange mechanism for nanocomposite magnets.« less" @default.
- W3144561387 created "2021-04-13" @default.
- W3144561387 creator A5011221668 @default.
- W3144561387 creator A5030947938 @default.
- W3144561387 date "2003-08-03" @default.
- W3144561387 modified "2023-10-18" @default.
- W3144561387 title "MAGNETIC IMAGING OF NANOCOMPOSITE MAGNETS" @default.
- W3144561387 hasPublicationYear "2003" @default.
- W3144561387 type Work @default.
- W3144561387 sameAs 3144561387 @default.
- W3144561387 citedByCount "0" @default.
- W3144561387 crossrefType "proceedings" @default.
- W3144561387 hasAuthorship W3144561387A5011221668 @default.
- W3144561387 hasAuthorship W3144561387A5030947938 @default.
- W3144561387 hasBestOaLocation W31445613872 @default.
- W3144561387 hasConcept C127413603 @default.
- W3144561387 hasConcept C159985019 @default.
- W3144561387 hasConcept C16389437 @default.
- W3144561387 hasConcept C192562407 @default.
- W3144561387 hasConcept C78519656 @default.
- W3144561387 hasConcept C92880739 @default.
- W3144561387 hasConceptScore W3144561387C127413603 @default.
- W3144561387 hasConceptScore W3144561387C159985019 @default.
- W3144561387 hasConceptScore W3144561387C16389437 @default.
- W3144561387 hasConceptScore W3144561387C192562407 @default.
- W3144561387 hasConceptScore W3144561387C78519656 @default.
- W3144561387 hasConceptScore W3144561387C92880739 @default.
- W3144561387 hasLocation W31445613871 @default.
- W3144561387 hasLocation W31445613872 @default.
- W3144561387 hasOpenAccess W3144561387 @default.
- W3144561387 hasPrimaryLocation W31445613871 @default.
- W3144561387 hasRelatedWork W1972304764 @default.
- W3144561387 hasRelatedWork W2027488197 @default.
- W3144561387 hasRelatedWork W2104908753 @default.
- W3144561387 hasRelatedWork W2170022756 @default.
- W3144561387 hasRelatedWork W2322906071 @default.
- W3144561387 hasRelatedWork W2323084632 @default.
- W3144561387 hasRelatedWork W2339889154 @default.
- W3144561387 hasRelatedWork W2896665349 @default.
- W3144561387 hasRelatedWork W3131763032 @default.
- W3144561387 hasRelatedWork W4385652438 @default.
- W3144561387 isParatext "false" @default.
- W3144561387 isRetracted "false" @default.
- W3144561387 magId "3144561387" @default.
- W3144561387 workType "paratext" @default.