Matches in SemOpenAlex for { <https://semopenalex.org/work/W3144565540> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W3144565540 abstract "In this report we propose a classification technique for skin lesion images as a part of our submission for ISIC 2018 Challenge in Skin Lesion Analysis Towards Melanoma Detection. Our data was extracted from the ISIC 2018: Skin Lesion Analysis Towards Melanoma Detection grand challenge datasets. The features are extracted through a Convolutional Neural Network, in our case ResNet50 and then using these features we train a DeepForest, having cascading layers, to classify our skin lesion images. We know that Convolutional Neural Networks are a state-of-the-art technique in representation learning for images, with the convolutional filters learning to detect features from images through backpropagation. These features are then usually fed to a classifier like a softmax layer or other such classifiers for classification tasks. In our case we do not use the traditional backpropagation method and train a softmax layer for classification. Instead, we use Deep Forest, a novel decision tree ensemble approach with performance highly competitive to deep neural networks in a broad range of tasks. Thus we use a ResNet50 to extract the features from skin lesion images and then use the Deep Forest to classify these images. This method has been used because Deep Forest has been found to be hugely efficient in areas where there are only small-scale training data available. Also as the Deep Forest network decides its complexity by itself, it also caters to the problem of dataset imbalance we faced in this problem." @default.
- W3144565540 created "2021-04-13" @default.
- W3144565540 creator A5068237070 @default.
- W3144565540 date "2018-07-16" @default.
- W3144565540 modified "2023-09-24" @default.
- W3144565540 title "Disease Classification within Dermascopic Images Using features extracted by ResNet50 and classification through Deep Forest" @default.
- W3144565540 hasPublicationYear "2018" @default.
- W3144565540 type Work @default.
- W3144565540 sameAs 3144565540 @default.
- W3144565540 citedByCount "0" @default.
- W3144565540 crossrefType "posted-content" @default.
- W3144565540 hasAuthorship W3144565540A5068237070 @default.
- W3144565540 hasConcept C108583219 @default.
- W3144565540 hasConcept C115961682 @default.
- W3144565540 hasConcept C119857082 @default.
- W3144565540 hasConcept C153180895 @default.
- W3144565540 hasConcept C154945302 @default.
- W3144565540 hasConcept C155032097 @default.
- W3144565540 hasConcept C188441871 @default.
- W3144565540 hasConcept C41008148 @default.
- W3144565540 hasConcept C50644808 @default.
- W3144565540 hasConcept C75294576 @default.
- W3144565540 hasConcept C81363708 @default.
- W3144565540 hasConcept C84525736 @default.
- W3144565540 hasConcept C95623464 @default.
- W3144565540 hasConceptScore W3144565540C108583219 @default.
- W3144565540 hasConceptScore W3144565540C115961682 @default.
- W3144565540 hasConceptScore W3144565540C119857082 @default.
- W3144565540 hasConceptScore W3144565540C153180895 @default.
- W3144565540 hasConceptScore W3144565540C154945302 @default.
- W3144565540 hasConceptScore W3144565540C155032097 @default.
- W3144565540 hasConceptScore W3144565540C188441871 @default.
- W3144565540 hasConceptScore W3144565540C41008148 @default.
- W3144565540 hasConceptScore W3144565540C50644808 @default.
- W3144565540 hasConceptScore W3144565540C75294576 @default.
- W3144565540 hasConceptScore W3144565540C81363708 @default.
- W3144565540 hasConceptScore W3144565540C84525736 @default.
- W3144565540 hasConceptScore W3144565540C95623464 @default.
- W3144565540 hasLocation W31445655401 @default.
- W3144565540 hasOpenAccess W3144565540 @default.
- W3144565540 hasPrimaryLocation W31445655401 @default.
- W3144565540 hasRelatedWork W2426398770 @default.
- W3144565540 hasRelatedWork W2517185326 @default.
- W3144565540 hasRelatedWork W2533302542 @default.
- W3144565540 hasRelatedWork W2570873234 @default.
- W3144565540 hasRelatedWork W2755850335 @default.
- W3144565540 hasRelatedWork W2808362157 @default.
- W3144565540 hasRelatedWork W2883041339 @default.
- W3144565540 hasRelatedWork W2890599568 @default.
- W3144565540 hasRelatedWork W2909734648 @default.
- W3144565540 hasRelatedWork W2971438638 @default.
- W3144565540 hasRelatedWork W2986507176 @default.
- W3144565540 hasRelatedWork W2989695024 @default.
- W3144565540 hasRelatedWork W2996856019 @default.
- W3144565540 hasRelatedWork W3005826475 @default.
- W3144565540 hasRelatedWork W3022637981 @default.
- W3144565540 hasRelatedWork W3032626727 @default.
- W3144565540 hasRelatedWork W3044254919 @default.
- W3144565540 hasRelatedWork W3044795413 @default.
- W3144565540 hasRelatedWork W3128535088 @default.
- W3144565540 hasRelatedWork W3210322085 @default.
- W3144565540 isParatext "false" @default.
- W3144565540 isRetracted "false" @default.
- W3144565540 magId "3144565540" @default.
- W3144565540 workType "article" @default.