Matches in SemOpenAlex for { <https://semopenalex.org/work/W3144611481> ?p ?o ?g. }
- W3144611481 endingPage "14" @default.
- W3144611481 startingPage "1" @default.
- W3144611481 abstract "Soil erosion induced by rainfall under prevailing conditions is a prominent problem to farmers in tropical sloping lands of Northeast Vietnam. This study evaluates possibility of predicting erosion status by machine learning models, including fuzzy k-nearest neighbor (FKNN), artificial neural network (ANN), support vector machine (SVM), least squares support vector machine (LSSVM), and relevance vector machine (RVM). Model evaluation employed a historical dataset consisting of ten explanatory variables and soil erosion featured four different land use managements on hillslopes in Northwest Vietnam. All 236 data samples representing soil erosion/nonerosion events were randomly prepared (80% for training and 20% for testing) to assess the robustness of the five models. This subsampling process was repeatedly carried out by 30 rounds to eliminate the issue of randomness in data selection. Classification accuracy rate (CAR) and area under receiver operating characteristic (AUC) were used to evaluate performance of the five models. Significant difference between different algorithms was verified by the Wilcoxon test. Results of the study showed that RVM model achieves the best outcomes in both training (CAR = 92.22% and AUC = 0.98) and testing phases (CAR = 91.94% and AUC = 0.97). Four other learning algorithms also demonstrated good performance as indicated by their CAR values surpassing 80% and AUC values greater than 0.9. Hence, these results strongly confirm the efficacy of applying machine learning models for soil erosion prediction." @default.
- W3144611481 created "2021-04-13" @default.
- W3144611481 creator A5038919661 @default.
- W3144611481 creator A5083372657 @default.
- W3144611481 creator A5085107699 @default.
- W3144611481 date "2021-04-02" @default.
- W3144611481 modified "2023-09-27" @default.
- W3144611481 title "Evaluation of Different Machine Learning Models for Predicting Soil Erosion in Tropical Sloping Lands of Northeast Vietnam" @default.
- W3144611481 cites W1496317909 @default.
- W3144611481 cites W1596717185 @default.
- W3144611481 cites W1978177881 @default.
- W3144611481 cites W1985545619 @default.
- W3144611481 cites W1986959058 @default.
- W3144611481 cites W1989784053 @default.
- W3144611481 cites W1994109567 @default.
- W3144611481 cites W2006620664 @default.
- W3144611481 cites W2012118327 @default.
- W3144611481 cites W2027775610 @default.
- W3144611481 cites W2028995354 @default.
- W3144611481 cites W2030738556 @default.
- W3144611481 cites W2038154721 @default.
- W3144611481 cites W2040895929 @default.
- W3144611481 cites W2052997960 @default.
- W3144611481 cites W2064946026 @default.
- W3144611481 cites W2067177886 @default.
- W3144611481 cites W2076622223 @default.
- W3144611481 cites W2089221633 @default.
- W3144611481 cites W2100328850 @default.
- W3144611481 cites W2117259148 @default.
- W3144611481 cites W2122111042 @default.
- W3144611481 cites W2123011006 @default.
- W3144611481 cites W2138703158 @default.
- W3144611481 cites W2154053567 @default.
- W3144611481 cites W2155482699 @default.
- W3144611481 cites W2164330572 @default.
- W3144611481 cites W2223806373 @default.
- W3144611481 cites W2339525940 @default.
- W3144611481 cites W2342759052 @default.
- W3144611481 cites W2418032828 @default.
- W3144611481 cites W2506178836 @default.
- W3144611481 cites W2531896461 @default.
- W3144611481 cites W2565116123 @default.
- W3144611481 cites W2740117919 @default.
- W3144611481 cites W2770328471 @default.
- W3144611481 cites W2791186434 @default.
- W3144611481 cites W2791299376 @default.
- W3144611481 cites W2797380432 @default.
- W3144611481 cites W2884613110 @default.
- W3144611481 cites W2892437484 @default.
- W3144611481 cites W2896556344 @default.
- W3144611481 cites W2898604512 @default.
- W3144611481 cites W2905329804 @default.
- W3144611481 cites W2909193898 @default.
- W3144611481 cites W2916366368 @default.
- W3144611481 cites W2919115771 @default.
- W3144611481 cites W2925322067 @default.
- W3144611481 cites W2982801070 @default.
- W3144611481 cites W2993176215 @default.
- W3144611481 cites W3034253215 @default.
- W3144611481 cites W3046919919 @default.
- W3144611481 cites W3082841455 @default.
- W3144611481 cites W3082852350 @default.
- W3144611481 cites W3085610865 @default.
- W3144611481 cites W3086851194 @default.
- W3144611481 cites W3089020045 @default.
- W3144611481 cites W3095658067 @default.
- W3144611481 cites W3130233783 @default.
- W3144611481 cites W3132382781 @default.
- W3144611481 cites W422787329 @default.
- W3144611481 cites W580594664 @default.
- W3144611481 cites W920490136 @default.
- W3144611481 doi "https://doi.org/10.1155/2021/6665485" @default.
- W3144611481 hasPublicationYear "2021" @default.
- W3144611481 type Work @default.
- W3144611481 sameAs 3144611481 @default.
- W3144611481 citedByCount "1" @default.
- W3144611481 countsByYear W31446114812022 @default.
- W3144611481 crossrefType "journal-article" @default.
- W3144611481 hasAuthorship W3144611481A5038919661 @default.
- W3144611481 hasAuthorship W3144611481A5083372657 @default.
- W3144611481 hasAuthorship W3144611481A5085107699 @default.
- W3144611481 hasBestOaLocation W31446114811 @default.
- W3144611481 hasConcept C105795698 @default.
- W3144611481 hasConcept C119857082 @default.
- W3144611481 hasConcept C12267149 @default.
- W3144611481 hasConcept C123157820 @default.
- W3144611481 hasConcept C125112378 @default.
- W3144611481 hasConcept C127313418 @default.
- W3144611481 hasConcept C12868164 @default.
- W3144611481 hasConcept C14948415 @default.
- W3144611481 hasConcept C151730666 @default.
- W3144611481 hasConcept C154945302 @default.
- W3144611481 hasConcept C169258074 @default.
- W3144611481 hasConcept C206041023 @default.
- W3144611481 hasConcept C33923547 @default.
- W3144611481 hasConcept C41008148 @default.
- W3144611481 hasConcept C50644808 @default.
- W3144611481 hasConceptScore W3144611481C105795698 @default.