Matches in SemOpenAlex for { <https://semopenalex.org/work/W3144700418> ?p ?o ?g. }
- W3144700418 endingPage "547" @default.
- W3144700418 startingPage "547" @default.
- W3144700418 abstract "Multivariate statistical analysis such as partial least square regression (PLSR) is the common data processing technique used to handle high-dimensional data space on near-infrared (NIR) spectral datasets. The PLSR is useful to tackle the multicollinearity and heteroscedasticity problem that can be commonly found in such data space. With the problem of the nonlinear structure in the original input space, the use of the classical PLSR model might not be appropriate. In addition, the contamination of multiple outliers and high leverage points (HLPs) in the dataset could further damage the model. Generally, HLPs contain both good leverage points (GLPs) and bad leverage points (BLPs); therefore, in this case, removing the BLPs seems relevant since it has a significant impact on the parameter estimates and can slow down the convergence process. On the other hand, the GLPs provide a good efficiency in the model calibration process; thus, they should not be eliminated. In this study, robust alternatives to the existing kernel partial least square (KPLS) regression, which are called the kernel partial robust GM6-estimator (KPRGM6) regression and the kernel partial robust modified GM6-estimator (KPRMGM6) regression are introduced. The nonlinear solution on PLSR was handled through kernel-based learning by nonlinearly projecting the original input data matrix into a high-dimensional feature mapping that corresponded to the reproducing kernel Hilbert spaces (RKHS). To increase the robustness, the improvements on GM6 estimators are presented with the nonlinear PLSR. Based on the investigation using several artificial dataset scenarios from Monte Carlo simulations and two sets from the near-infrared (NIR) spectral dataset, the proposed robust KPRMGM6 is found to be superior to the robust KPRGM6 and non-robust KPLS." @default.
- W3144700418 created "2021-04-13" @default.
- W3144700418 creator A5000700306 @default.
- W3144700418 creator A5039692663 @default.
- W3144700418 creator A5056073009 @default.
- W3144700418 creator A5056605647 @default.
- W3144700418 creator A5062259439 @default.
- W3144700418 date "2021-03-26" @default.
- W3144700418 modified "2023-09-23" @default.
- W3144700418 title "Kernel Partial Least Square Regression with High Resistance to Multiple Outliers and Bad Leverage Points on Near-Infrared Spectral Data Analysis" @default.
- W3144700418 cites W1970972107 @default.
- W3144700418 cites W1985147596 @default.
- W3144700418 cites W1986280275 @default.
- W3144700418 cites W1994649230 @default.
- W3144700418 cites W2008332864 @default.
- W3144700418 cites W2015596806 @default.
- W3144700418 cites W2021917714 @default.
- W3144700418 cites W2040019138 @default.
- W3144700418 cites W2051674548 @default.
- W3144700418 cites W2056045026 @default.
- W3144700418 cites W2065742895 @default.
- W3144700418 cites W2076061146 @default.
- W3144700418 cites W2124947316 @default.
- W3144700418 cites W2140095548 @default.
- W3144700418 cites W2152701363 @default.
- W3144700418 cites W2377753499 @default.
- W3144700418 cites W2498631646 @default.
- W3144700418 cites W2783675951 @default.
- W3144700418 cites W2793337497 @default.
- W3144700418 cites W3003399353 @default.
- W3144700418 cites W3082260252 @default.
- W3144700418 cites W3094021078 @default.
- W3144700418 cites W4229530126 @default.
- W3144700418 cites W4243563432 @default.
- W3144700418 cites W4362131110 @default.
- W3144700418 doi "https://doi.org/10.3390/sym13040547" @default.
- W3144700418 hasPublicationYear "2021" @default.
- W3144700418 type Work @default.
- W3144700418 sameAs 3144700418 @default.
- W3144700418 citedByCount "2" @default.
- W3144700418 countsByYear W31447004182022 @default.
- W3144700418 countsByYear W31447004182023 @default.
- W3144700418 crossrefType "journal-article" @default.
- W3144700418 hasAuthorship W3144700418A5000700306 @default.
- W3144700418 hasAuthorship W3144700418A5039692663 @default.
- W3144700418 hasAuthorship W3144700418A5056073009 @default.
- W3144700418 hasAuthorship W3144700418A5056605647 @default.
- W3144700418 hasAuthorship W3144700418A5062259439 @default.
- W3144700418 hasBestOaLocation W31447004181 @default.
- W3144700418 hasConcept C105795698 @default.
- W3144700418 hasConcept C114614502 @default.
- W3144700418 hasConcept C122280245 @default.
- W3144700418 hasConcept C12267149 @default.
- W3144700418 hasConcept C134306372 @default.
- W3144700418 hasConcept C153083717 @default.
- W3144700418 hasConcept C154945302 @default.
- W3144700418 hasConcept C185429906 @default.
- W3144700418 hasConcept C22354355 @default.
- W3144700418 hasConcept C27438332 @default.
- W3144700418 hasConcept C33923547 @default.
- W3144700418 hasConcept C41008148 @default.
- W3144700418 hasConcept C62799726 @default.
- W3144700418 hasConcept C74193536 @default.
- W3144700418 hasConcept C74887250 @default.
- W3144700418 hasConcept C79337645 @default.
- W3144700418 hasConcept C80884492 @default.
- W3144700418 hasConceptScore W3144700418C105795698 @default.
- W3144700418 hasConceptScore W3144700418C114614502 @default.
- W3144700418 hasConceptScore W3144700418C122280245 @default.
- W3144700418 hasConceptScore W3144700418C12267149 @default.
- W3144700418 hasConceptScore W3144700418C134306372 @default.
- W3144700418 hasConceptScore W3144700418C153083717 @default.
- W3144700418 hasConceptScore W3144700418C154945302 @default.
- W3144700418 hasConceptScore W3144700418C185429906 @default.
- W3144700418 hasConceptScore W3144700418C22354355 @default.
- W3144700418 hasConceptScore W3144700418C27438332 @default.
- W3144700418 hasConceptScore W3144700418C33923547 @default.
- W3144700418 hasConceptScore W3144700418C41008148 @default.
- W3144700418 hasConceptScore W3144700418C62799726 @default.
- W3144700418 hasConceptScore W3144700418C74193536 @default.
- W3144700418 hasConceptScore W3144700418C74887250 @default.
- W3144700418 hasConceptScore W3144700418C79337645 @default.
- W3144700418 hasConceptScore W3144700418C80884492 @default.
- W3144700418 hasIssue "4" @default.
- W3144700418 hasLocation W31447004181 @default.
- W3144700418 hasLocation W31447004182 @default.
- W3144700418 hasOpenAccess W3144700418 @default.
- W3144700418 hasPrimaryLocation W31447004181 @default.
- W3144700418 hasRelatedWork W180864206 @default.
- W3144700418 hasRelatedWork W1994649230 @default.
- W3144700418 hasRelatedWork W2169877038 @default.
- W3144700418 hasRelatedWork W2225687760 @default.
- W3144700418 hasRelatedWork W2392397287 @default.
- W3144700418 hasRelatedWork W2534878021 @default.
- W3144700418 hasRelatedWork W2900589062 @default.
- W3144700418 hasRelatedWork W2910776544 @default.
- W3144700418 hasRelatedWork W4225151263 @default.
- W3144700418 hasRelatedWork W62477 @default.