Matches in SemOpenAlex for { <https://semopenalex.org/work/W3144883044> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3144883044 endingPage "55328" @default.
- W3144883044 startingPage "55312" @default.
- W3144883044 abstract "In recent years, deep learning techniques are employed in the mammography processing field to reduce radiologists’ costs. Existing breast mass classification systems are implemented using deep learning technologies such as a Convolutional Neural Network (CNN). CNN based systems have attained higher performance than the machine learning-based systems in the classification task of mammography images, but a few issues still exist. Some of these issues are; ignorance of semantic features, analysis limitation to the current patch of images, lost patches in less contrast mammography images, and ambiguity in segmentation. These issues lead to increased false information about patches of mammography image, computational cost, decisions based on current patches, and not recovering the variance of patches intensity. In turn, breast mass classification systems based on convolutional neural networks produced unsatisfactory classification accuracy. To resolve these issues and improve the accuracy of classification on low contrast images, we propose a novel Breast Mass Classification system named BMC. It has improved architecture based on a combination of k- mean clustering, Long Short-Term Memory network of Recurrent Neural Network (RNN), CNN, random forest, boosting techniques to classify the breast mass into benign, malignant, and normal. Further, the proposed BMC system is compared with existing classification systems using two publicly available datasets of mammographic images. Proposed BMC system achieves the sensitivity, specificity, F-measure, and accuracy for the DDSM dataset is 0.97%, 0.98%,0.97%, 0.96% and for the MIAS dataset is 0.97%, 0.97%,0.98%, and 0.95% respectively. Further Area Under Curve (AUC) rate of the proposed BMC system lies between 0.94% - 0.97% for DDSM and 0.94%-0.98% for the MIAS dataset. The BMC method worked comparably better than other mammography classification schemes that have previously been invented. Moreover, the Confidence interval statistical test is also employed to determine the classification accuracy of the BMC system using different configurations and neural network parameters." @default.
- W3144883044 created "2021-04-13" @default.
- W3144883044 creator A5054026576 @default.
- W3144883044 creator A5067884400 @default.
- W3144883044 date "2021-01-01" @default.
- W3144883044 modified "2023-10-12" @default.
- W3144883044 title "Automated Breast Mass Classification System Using Deep Learning and Ensemble Learning in Digital Mammogram" @default.
- W3144883044 cites W1742988325 @default.
- W3144883044 cites W1990985109 @default.
- W3144883044 cites W2024124973 @default.
- W3144883044 cites W2063817871 @default.
- W3144883044 cites W2069568152 @default.
- W3144883044 cites W2091002166 @default.
- W3144883044 cites W2098543955 @default.
- W3144883044 cites W2101771332 @default.
- W3144883044 cites W2130187411 @default.
- W3144883044 cites W2163352848 @default.
- W3144883044 cites W2240965754 @default.
- W3144883044 cites W2436993881 @default.
- W3144883044 cites W2559553341 @default.
- W3144883044 cites W2594151429 @default.
- W3144883044 cites W2609974544 @default.
- W3144883044 cites W2616634871 @default.
- W3144883044 cites W2682880626 @default.
- W3144883044 cites W2725008604 @default.
- W3144883044 cites W2760944304 @default.
- W3144883044 cites W2762481118 @default.
- W3144883044 cites W2766428274 @default.
- W3144883044 cites W2770114997 @default.
- W3144883044 cites W2774982578 @default.
- W3144883044 cites W2783710041 @default.
- W3144883044 cites W2784257876 @default.
- W3144883044 cites W2795096713 @default.
- W3144883044 cites W2808210572 @default.
- W3144883044 cites W2901264604 @default.
- W3144883044 cites W2904060505 @default.
- W3144883044 cites W2906529026 @default.
- W3144883044 cites W2908052439 @default.
- W3144883044 cites W2922364031 @default.
- W3144883044 cites W2944539652 @default.
- W3144883044 cites W2955518678 @default.
- W3144883044 cites W2965014579 @default.
- W3144883044 cites W2965845428 @default.
- W3144883044 cites W2972101069 @default.
- W3144883044 cites W2993303538 @default.
- W3144883044 cites W2996253120 @default.
- W3144883044 cites W3001021123 @default.
- W3144883044 cites W3006379117 @default.
- W3144883044 cites W3023174922 @default.
- W3144883044 cites W3040727891 @default.
- W3144883044 cites W3041133507 @default.
- W3144883044 cites W3041266228 @default.
- W3144883044 cites W3044261867 @default.
- W3144883044 cites W3047434002 @default.
- W3144883044 cites W3083119893 @default.
- W3144883044 doi "https://doi.org/10.1109/access.2021.3071297" @default.
- W3144883044 hasPublicationYear "2021" @default.
- W3144883044 type Work @default.
- W3144883044 sameAs 3144883044 @default.
- W3144883044 citedByCount "33" @default.
- W3144883044 countsByYear W31448830442021 @default.
- W3144883044 countsByYear W31448830442022 @default.
- W3144883044 countsByYear W31448830442023 @default.
- W3144883044 crossrefType "journal-article" @default.
- W3144883044 hasAuthorship W3144883044A5054026576 @default.
- W3144883044 hasAuthorship W3144883044A5067884400 @default.
- W3144883044 hasBestOaLocation W31448830441 @default.
- W3144883044 hasConcept C108583219 @default.
- W3144883044 hasConcept C119857082 @default.
- W3144883044 hasConcept C153180895 @default.
- W3144883044 hasConcept C154945302 @default.
- W3144883044 hasConcept C41008148 @default.
- W3144883044 hasConcept C45942800 @default.
- W3144883044 hasConceptScore W3144883044C108583219 @default.
- W3144883044 hasConceptScore W3144883044C119857082 @default.
- W3144883044 hasConceptScore W3144883044C153180895 @default.
- W3144883044 hasConceptScore W3144883044C154945302 @default.
- W3144883044 hasConceptScore W3144883044C41008148 @default.
- W3144883044 hasConceptScore W3144883044C45942800 @default.
- W3144883044 hasFunder F4320322322 @default.
- W3144883044 hasLocation W31448830441 @default.
- W3144883044 hasOpenAccess W3144883044 @default.
- W3144883044 hasPrimaryLocation W31448830441 @default.
- W3144883044 hasRelatedWork W2810053714 @default.
- W3144883044 hasRelatedWork W2950066684 @default.
- W3144883044 hasRelatedWork W3013699712 @default.
- W3144883044 hasRelatedWork W3136076031 @default.
- W3144883044 hasRelatedWork W3136979370 @default.
- W3144883044 hasRelatedWork W3162132941 @default.
- W3144883044 hasRelatedWork W4200409985 @default.
- W3144883044 hasRelatedWork W4298388782 @default.
- W3144883044 hasRelatedWork W4308112567 @default.
- W3144883044 hasRelatedWork W4310989423 @default.
- W3144883044 hasVolume "9" @default.
- W3144883044 isParatext "false" @default.
- W3144883044 isRetracted "false" @default.
- W3144883044 magId "3144883044" @default.
- W3144883044 workType "article" @default.