Matches in SemOpenAlex for { <https://semopenalex.org/work/W3144885962> ?p ?o ?g. }
- W3144885962 abstract "ABSTRACT Strain and environmental nutrient concentrations can affect the production of sensory impact compounds during yeast fermentation. Despite reports on the impact of nutrient conditions on kinetics of cellular growth, it is uncertain to what extent nitrogen utilization by commercial Saccharomyces cerevisiae wine strains affects the production of volatile organic (aroma) compounds (VOCs). Here we ask whether i) consumption of amino acids contribute to VOCs (fusel alcohols, acetate esters, and fatty acid esters) in commercial S. cerevisiae yeast strains, ii) there is inter-strain variation in VOC production, and iii) there is a correlation between the production of aroma compounds and nitrogen utilization. We analyzed the consumption of nutrients as well as the production of major VOCs during fermentation of a chemically defined grape juice medium with four commercial S. cerevisiae yeast strains: Elixir, Opale, R2, and Uvaferm. The production of VOCs was variable among the strains where Uvaferm correlated with ethyl acetate and ethyl hexanoate production, R2 negatively correlated with the acetate esters, and Opale positively correlated with fusel alcohols. The four strains’ total biomass formation was similar, pointing to metabolic differences in the utilization of nutrients to form secondary metabolites such as VOCs. To understand the strain-dependent differences in VOC production, partial least-squares linear regression coupled with genome-scale metabolic modeling was performed with the objective to correlate nitrogen utilization with fermentation biomass and volatile formation. Total aroma production was found to be a strong function of nitrogen utilization (R 2 = 0.87). We found that glycine, tyrosine, leucine, and lysine utilization were positively correlated with fusel alcohols and acetate esters concentrations e.g., 2-phenyl acetate during wine fermentation. Parsimonious flux balance analysis and flux enrichment analysis confirmed the usage of these nitrogen utilization pathways based on the strains’ VOC production phenotype. IMPORTANCE Saccharomyces cerevisiae is widely used in grape juice fermentation to produce wines. Along with the genetic background, the nitrogen in the environment in which S. cerevisiae grows impacts its regulation of metabolism. Also, commercial S. cerevisiae strains exhibit immense diversity in their formation of aromas, and a desirable aroma bouquet is an essential characteristic for wines. Since nitrogen affects aroma formation in wines, it is essential to know the extent of this connection and how it leads to strain-dependent aroma profiles in wines. We evaluated the differences in the production of key aroma compounds among four commercial wine strains. Moreover, we analyzed the role of nitrogen utilization on the formation of various aroma compounds. This work illustrates the unique aroma producing differences among industrial yeast strains and suggests more intricate, nitrogen associated routes influencing those aroma producing differences." @default.
- W3144885962 created "2021-04-13" @default.
- W3144885962 creator A5016023826 @default.
- W3144885962 creator A5016408784 @default.
- W3144885962 creator A5069868522 @default.
- W3144885962 creator A5074450770 @default.
- W3144885962 creator A5077145740 @default.
- W3144885962 date "2021-03-30" @default.
- W3144885962 modified "2023-10-16" @default.
- W3144885962 title "Nitrogenous Compound Utilization and Production of Volatile Organic Compounds among Commercial Wine Yeasts Highlight Strain-Specific Metabolic Diversity" @default.
- W3144885962 cites W1705141275 @default.
- W3144885962 cites W1921308118 @default.
- W3144885962 cites W1939247345 @default.
- W3144885962 cites W1974225400 @default.
- W3144885962 cites W1976251851 @default.
- W3144885962 cites W1979862710 @default.
- W3144885962 cites W1981220166 @default.
- W3144885962 cites W1984837673 @default.
- W3144885962 cites W1988678077 @default.
- W3144885962 cites W1995308269 @default.
- W3144885962 cites W1996989703 @default.
- W3144885962 cites W1998116301 @default.
- W3144885962 cites W1998869177 @default.
- W3144885962 cites W2000199014 @default.
- W3144885962 cites W2002340442 @default.
- W3144885962 cites W2037226761 @default.
- W3144885962 cites W2040632126 @default.
- W3144885962 cites W2052065729 @default.
- W3144885962 cites W2056481919 @default.
- W3144885962 cites W2057618661 @default.
- W3144885962 cites W2058204942 @default.
- W3144885962 cites W2065358442 @default.
- W3144885962 cites W2065926860 @default.
- W3144885962 cites W2068256171 @default.
- W3144885962 cites W2073413181 @default.
- W3144885962 cites W2073503722 @default.
- W3144885962 cites W2075421161 @default.
- W3144885962 cites W2080394104 @default.
- W3144885962 cites W2086402874 @default.
- W3144885962 cites W2088808594 @default.
- W3144885962 cites W2098249598 @default.
- W3144885962 cites W2102221598 @default.
- W3144885962 cites W2106245349 @default.
- W3144885962 cites W2106808807 @default.
- W3144885962 cites W2110638089 @default.
- W3144885962 cites W2120084974 @default.
- W3144885962 cites W2124358835 @default.
- W3144885962 cites W2135718750 @default.
- W3144885962 cites W2139357034 @default.
- W3144885962 cites W2152456759 @default.
- W3144885962 cites W2157996918 @default.
- W3144885962 cites W2160541874 @default.
- W3144885962 cites W2164904971 @default.
- W3144885962 cites W2166964915 @default.
- W3144885962 cites W2171182591 @default.
- W3144885962 cites W2202347610 @default.
- W3144885962 cites W2237252690 @default.
- W3144885962 cites W2309391507 @default.
- W3144885962 cites W2339850886 @default.
- W3144885962 cites W2460296593 @default.
- W3144885962 cites W2495615558 @default.
- W3144885962 cites W2734641748 @default.
- W3144885962 cites W2743063996 @default.
- W3144885962 cites W2748963779 @default.
- W3144885962 cites W2750357512 @default.
- W3144885962 cites W2762019694 @default.
- W3144885962 cites W2772951253 @default.
- W3144885962 cites W2784379527 @default.
- W3144885962 cites W2806953728 @default.
- W3144885962 cites W2953213185 @default.
- W3144885962 cites W2965590414 @default.
- W3144885962 cites W2969609872 @default.
- W3144885962 cites W3087053357 @default.
- W3144885962 doi "https://doi.org/10.1101/2021.03.29.437628" @default.
- W3144885962 hasPublicationYear "2021" @default.
- W3144885962 type Work @default.
- W3144885962 sameAs 3144885962 @default.
- W3144885962 citedByCount "0" @default.
- W3144885962 crossrefType "posted-content" @default.
- W3144885962 hasAuthorship W3144885962A5016023826 @default.
- W3144885962 hasAuthorship W3144885962A5016408784 @default.
- W3144885962 hasAuthorship W3144885962A5069868522 @default.
- W3144885962 hasAuthorship W3144885962A5074450770 @default.
- W3144885962 hasAuthorship W3144885962A5077145740 @default.
- W3144885962 hasBestOaLocation W31448859621 @default.
- W3144885962 hasConcept C100544194 @default.
- W3144885962 hasConcept C115540264 @default.
- W3144885962 hasConcept C13984183 @default.
- W3144885962 hasConcept C142796444 @default.
- W3144885962 hasConcept C178790620 @default.
- W3144885962 hasConcept C185592680 @default.
- W3144885962 hasConcept C21913473 @default.
- W3144885962 hasConcept C2776016237 @default.
- W3144885962 hasConcept C2779222958 @default.
- W3144885962 hasConcept C2779858419 @default.
- W3144885962 hasConcept C2780563676 @default.
- W3144885962 hasConcept C29815224 @default.
- W3144885962 hasConcept C31903555 @default.
- W3144885962 hasConcept C515207424 @default.
- W3144885962 hasConcept C55493867 @default.