Matches in SemOpenAlex for { <https://semopenalex.org/work/W3144934577> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3144934577 abstract "Machine learning is a pivotal viewpoint for grasping real-world and purposeful use cases for yield prediction of crops. Machine learning is a supportive tool for the agricultural sector which helps us to decide which plant to grow and when to grow the desired plant. This research scrutinizes the usage and implementation of predicting the crop type based on location parameters using ensemble techniques. From a set of given parameters, machine learning can forecast the outcome through unsupervised of supervised learning techniques. To get the required output parameter, we should produce an acceptable and satisfactory function by some set of variables which will depict the output (aimed variable) using the given input variables or parameters. This includes the ensemble (combination) of two machine learning algorithms which improves the crop yield prediction accuracy. Through our searching strategy, we retrieved almost 7 features from various databases and finalized 28242 instances. We investigated these features, analyzed algorithms, and provided propositions for further research work. According to our search strategy, the important parameters taken into consideration are related to climatic conditions like temperature, rainfall, and crop type. From many base papers we came to know that Neural Networks, Decision Tree are the most used algorithms for these models. Decision tree uses parameters like maximum depth and n-estimators, so that by adjusting those parameters, we can get better results. After research, we have concluded that ensemble of Decision tree regressor and AdaBoost regressor gave major accuracy. Crop yield prediction subsumes prediction of the yield of the crop from formerly data. Ultimately, this strategy gives us a recommendation of which crop should be cultivated based on the weather conditions of the field location." @default.
- W3144934577 created "2021-04-13" @default.
- W3144934577 creator A5013931134 @default.
- W3144934577 creator A5046767851 @default.
- W3144934577 creator A5049487674 @default.
- W3144934577 creator A5063387793 @default.
- W3144934577 date "2021-02-04" @default.
- W3144934577 modified "2023-10-01" @default.
- W3144934577 title "An Ensemble Algorithm for Crop Yield Prediction" @default.
- W3144934577 cites W2885770726 @default.
- W3144934577 cites W2912213862 @default.
- W3144934577 cites W2945020384 @default.
- W3144934577 cites W2978511665 @default.
- W3144934577 cites W2999658315 @default.
- W3144934577 cites W3040938591 @default.
- W3144934577 cites W3079760979 @default.
- W3144934577 cites W3095339442 @default.
- W3144934577 cites W3103444592 @default.
- W3144934577 doi "https://doi.org/10.1109/icicv50876.2021.9388479" @default.
- W3144934577 hasPublicationYear "2021" @default.
- W3144934577 type Work @default.
- W3144934577 sameAs 3144934577 @default.
- W3144934577 citedByCount "16" @default.
- W3144934577 countsByYear W31449345772021 @default.
- W3144934577 countsByYear W31449345772022 @default.
- W3144934577 countsByYear W31449345772023 @default.
- W3144934577 crossrefType "proceedings-article" @default.
- W3144934577 hasAuthorship W3144934577A5013931134 @default.
- W3144934577 hasAuthorship W3144934577A5046767851 @default.
- W3144934577 hasAuthorship W3144934577A5049487674 @default.
- W3144934577 hasAuthorship W3144934577A5063387793 @default.
- W3144934577 hasConcept C113174947 @default.
- W3144934577 hasConcept C11413529 @default.
- W3144934577 hasConcept C119857082 @default.
- W3144934577 hasConcept C12267149 @default.
- W3144934577 hasConcept C124101348 @default.
- W3144934577 hasConcept C126343540 @default.
- W3144934577 hasConcept C134306372 @default.
- W3144934577 hasConcept C141404830 @default.
- W3144934577 hasConcept C154945302 @default.
- W3144934577 hasConcept C177264268 @default.
- W3144934577 hasConcept C182365436 @default.
- W3144934577 hasConcept C199360897 @default.
- W3144934577 hasConcept C33923547 @default.
- W3144934577 hasConcept C41008148 @default.
- W3144934577 hasConcept C45942800 @default.
- W3144934577 hasConcept C50644808 @default.
- W3144934577 hasConcept C6557445 @default.
- W3144934577 hasConcept C84525736 @default.
- W3144934577 hasConcept C86803240 @default.
- W3144934577 hasConceptScore W3144934577C113174947 @default.
- W3144934577 hasConceptScore W3144934577C11413529 @default.
- W3144934577 hasConceptScore W3144934577C119857082 @default.
- W3144934577 hasConceptScore W3144934577C12267149 @default.
- W3144934577 hasConceptScore W3144934577C124101348 @default.
- W3144934577 hasConceptScore W3144934577C126343540 @default.
- W3144934577 hasConceptScore W3144934577C134306372 @default.
- W3144934577 hasConceptScore W3144934577C141404830 @default.
- W3144934577 hasConceptScore W3144934577C154945302 @default.
- W3144934577 hasConceptScore W3144934577C177264268 @default.
- W3144934577 hasConceptScore W3144934577C182365436 @default.
- W3144934577 hasConceptScore W3144934577C199360897 @default.
- W3144934577 hasConceptScore W3144934577C33923547 @default.
- W3144934577 hasConceptScore W3144934577C41008148 @default.
- W3144934577 hasConceptScore W3144934577C45942800 @default.
- W3144934577 hasConceptScore W3144934577C50644808 @default.
- W3144934577 hasConceptScore W3144934577C6557445 @default.
- W3144934577 hasConceptScore W3144934577C84525736 @default.
- W3144934577 hasConceptScore W3144934577C86803240 @default.
- W3144934577 hasLocation W31449345771 @default.
- W3144934577 hasOpenAccess W3144934577 @default.
- W3144934577 hasPrimaryLocation W31449345771 @default.
- W3144934577 hasRelatedWork W1982621055 @default.
- W3144934577 hasRelatedWork W2097856925 @default.
- W3144934577 hasRelatedWork W2904660175 @default.
- W3144934577 hasRelatedWork W3100297620 @default.
- W3144934577 hasRelatedWork W3135651197 @default.
- W3144934577 hasRelatedWork W3139075488 @default.
- W3144934577 hasRelatedWork W3216815601 @default.
- W3144934577 hasRelatedWork W4285046548 @default.
- W3144934577 hasRelatedWork W4318350883 @default.
- W3144934577 hasRelatedWork W4382315444 @default.
- W3144934577 isParatext "false" @default.
- W3144934577 isRetracted "false" @default.
- W3144934577 magId "3144934577" @default.
- W3144934577 workType "article" @default.