Matches in SemOpenAlex for { <https://semopenalex.org/work/W3145142938> ?p ?o ?g. }
- W3145142938 endingPage "108112" @default.
- W3145142938 startingPage "108112" @default.
- W3145142938 abstract "• We explore the robust estimation of a random parameter when the transformation matrix suffers stochastic uncertainties. • A probability constrained robust estimation method is proposed to handle both bounded uncertainties and Gaussian uncertainties. • Two ap proximate PC robust estimators are derived by tackling two upper bounds of the formulated problem and using the safe tractable approximation techniques. • The comparative analysis reveals that there is a tradeoff between the MSE performance and computation complexity in the proposed two PC estimators. This paper investigates the problem of estimating a random parameter in a linear observation model when the transformation matrix suffers stochastic uncertainties. In practice, the uncertainties can be either the bounded uncertainties or the Gaussian uncertainties. The existing minimax robust estimation method is only applicable to the bounded uncertainties, and minimizes the worst-case mean squared error (MSE) over the region of uncertainties, irrespective of the probability of such worst-case scenario, so it tends to be overly conservative. A probability-constrained (PC) robust linear estimation method is proposed in this paper to minimize the MSE with a guaranteed probability, which can handle bounded uncertainties as well as Gaussian uncertainties. However, the formulated problem is not analytically tractable due to the unspecified distribution of the uncertainties, so two approximate PC robust estimators are derived by tackling two upper bounds of the original optimization problem and converting them to semidefinite programming problems with the safe tractable approximation techniques. The comparative analysis reveals that there is a tradeoff between the MSE performance and computation complexity in the proposed two PC estimators. The Monte Carlo simulations are used to corroborate the theoretical results, which demonstrate that the proposed PC estimators are robust to the uncertainties compared to the nominal linear minimum mean squared error (LMMSE) estimator and the nominal best linear unbiased estimator (BLUE), and are less conservative compared to the traditional minimax robust estimator." @default.
- W3145142938 created "2021-04-13" @default.
- W3145142938 creator A5032122751 @default.
- W3145142938 creator A5050572122 @default.
- W3145142938 creator A5085515565 @default.
- W3145142938 date "2021-08-01" @default.
- W3145142938 modified "2023-09-27" @default.
- W3145142938 title "Probability-Constrained robust estimation for a random parameter with stochastic model uncertainties" @default.
- W3145142938 cites W1966569928 @default.
- W3145142938 cites W1970870174 @default.
- W3145142938 cites W1995368377 @default.
- W3145142938 cites W2000034396 @default.
- W3145142938 cites W2042599231 @default.
- W3145142938 cites W2046033161 @default.
- W3145142938 cites W2051234657 @default.
- W3145142938 cites W2056374194 @default.
- W3145142938 cites W2065061269 @default.
- W3145142938 cites W2087005409 @default.
- W3145142938 cites W2099506495 @default.
- W3145142938 cites W2116431702 @default.
- W3145142938 cites W2131577848 @default.
- W3145142938 cites W2131939929 @default.
- W3145142938 cites W2135352374 @default.
- W3145142938 cites W2138247092 @default.
- W3145142938 cites W2149655188 @default.
- W3145142938 cites W2151481501 @default.
- W3145142938 cites W2152976633 @default.
- W3145142938 cites W2294822684 @default.
- W3145142938 cites W2793397694 @default.
- W3145142938 cites W2885004001 @default.
- W3145142938 cites W2976661860 @default.
- W3145142938 cites W3009546766 @default.
- W3145142938 cites W3094470433 @default.
- W3145142938 doi "https://doi.org/10.1016/j.sigpro.2021.108112" @default.
- W3145142938 hasPublicationYear "2021" @default.
- W3145142938 type Work @default.
- W3145142938 sameAs 3145142938 @default.
- W3145142938 citedByCount "1" @default.
- W3145142938 countsByYear W31451429382023 @default.
- W3145142938 crossrefType "journal-article" @default.
- W3145142938 hasAuthorship W3145142938A5032122751 @default.
- W3145142938 hasAuthorship W3145142938A5050572122 @default.
- W3145142938 hasAuthorship W3145142938A5085515565 @default.
- W3145142938 hasConcept C101901036 @default.
- W3145142938 hasConcept C104317684 @default.
- W3145142938 hasConcept C105795698 @default.
- W3145142938 hasConcept C11413529 @default.
- W3145142938 hasConcept C121332964 @default.
- W3145142938 hasConcept C122123141 @default.
- W3145142938 hasConcept C126255220 @default.
- W3145142938 hasConcept C134306372 @default.
- W3145142938 hasConcept C137631369 @default.
- W3145142938 hasConcept C149441793 @default.
- W3145142938 hasConcept C149728462 @default.
- W3145142938 hasConcept C163716315 @default.
- W3145142938 hasConcept C185429906 @default.
- W3145142938 hasConcept C185592680 @default.
- W3145142938 hasConcept C193254401 @default.
- W3145142938 hasConcept C204241405 @default.
- W3145142938 hasConcept C33923547 @default.
- W3145142938 hasConcept C34388435 @default.
- W3145142938 hasConcept C45374587 @default.
- W3145142938 hasConcept C55493867 @default.
- W3145142938 hasConcept C62520636 @default.
- W3145142938 hasConceptScore W3145142938C101901036 @default.
- W3145142938 hasConceptScore W3145142938C104317684 @default.
- W3145142938 hasConceptScore W3145142938C105795698 @default.
- W3145142938 hasConceptScore W3145142938C11413529 @default.
- W3145142938 hasConceptScore W3145142938C121332964 @default.
- W3145142938 hasConceptScore W3145142938C122123141 @default.
- W3145142938 hasConceptScore W3145142938C126255220 @default.
- W3145142938 hasConceptScore W3145142938C134306372 @default.
- W3145142938 hasConceptScore W3145142938C137631369 @default.
- W3145142938 hasConceptScore W3145142938C149441793 @default.
- W3145142938 hasConceptScore W3145142938C149728462 @default.
- W3145142938 hasConceptScore W3145142938C163716315 @default.
- W3145142938 hasConceptScore W3145142938C185429906 @default.
- W3145142938 hasConceptScore W3145142938C185592680 @default.
- W3145142938 hasConceptScore W3145142938C193254401 @default.
- W3145142938 hasConceptScore W3145142938C204241405 @default.
- W3145142938 hasConceptScore W3145142938C33923547 @default.
- W3145142938 hasConceptScore W3145142938C34388435 @default.
- W3145142938 hasConceptScore W3145142938C45374587 @default.
- W3145142938 hasConceptScore W3145142938C55493867 @default.
- W3145142938 hasConceptScore W3145142938C62520636 @default.
- W3145142938 hasLocation W31451429381 @default.
- W3145142938 hasOpenAccess W3145142938 @default.
- W3145142938 hasPrimaryLocation W31451429381 @default.
- W3145142938 hasRelatedWork W114644737 @default.
- W3145142938 hasRelatedWork W1982910724 @default.
- W3145142938 hasRelatedWork W2090440768 @default.
- W3145142938 hasRelatedWork W2390830226 @default.
- W3145142938 hasRelatedWork W2562747313 @default.
- W3145142938 hasRelatedWork W2900569574 @default.
- W3145142938 hasRelatedWork W3088725794 @default.
- W3145142938 hasRelatedWork W3105644203 @default.
- W3145142938 hasRelatedWork W3173431235 @default.
- W3145142938 hasRelatedWork W3204714198 @default.