Matches in SemOpenAlex for { <https://semopenalex.org/work/W3145208339> ?p ?o ?g. }
- W3145208339 endingPage "27" @default.
- W3145208339 startingPage "27" @default.
- W3145208339 abstract "Due to severe climate change impact on electricity consumption, as well as new trends in smart grids (such as the use of renewable resources and the advent of prosumers and energy commons), medium-term and long-term electricity load forecasting has become a crucial need. Such forecasts are necessary to support the plans and decisions related to the capacity evaluation of centralized and decentralized power generation systems, demand response strategies, and controlling the operation. To address this problem, the main objective of this study is to develop and compare precise district level models for predicting the electrical load demand based on machine learning techniques including support vector machine (SVM) and Random Forest (RF), and deep learning methods such as non-linear auto-regressive exogenous (NARX) neural network and recurrent neural networks (Long Short-Term Memory—LSTM). A dataset including nine years of historical load demand for Bruce County, Ontario, Canada, fused with the climatic information (temperature and wind speed) are used to train the models after completing the preprocessing and cleaning stages. The results show that by employing deep learning, the model could predict the load demand more accurately than SVM and RF, with an R-Squared of about 0.93–0.96 and Mean Absolute Percentage Error (MAPE) of about 4–10%. The model can be used not only by the municipalities as well as utility companies and power distributors in the management and expansion of electricity grids; but also by the households to make decisions on the adoption of home- and district-scale renewable energy technologies." @default.
- W3145208339 created "2021-04-13" @default.
- W3145208339 creator A5013002442 @default.
- W3145208339 creator A5018639467 @default.
- W3145208339 creator A5061964126 @default.
- W3145208339 creator A5078660951 @default.
- W3145208339 date "2021-04-06" @default.
- W3145208339 modified "2023-10-05" @default.
- W3145208339 title "Medium-Term Regional Electricity Load Forecasting through Machine Learning and Deep Learning" @default.
- W3145208339 cites W1967429206 @default.
- W3145208339 cites W2058819127 @default.
- W3145208339 cites W2059273489 @default.
- W3145208339 cites W2064469609 @default.
- W3145208339 cites W2064675550 @default.
- W3145208339 cites W2107878631 @default.
- W3145208339 cites W2129959438 @default.
- W3145208339 cites W2156302255 @default.
- W3145208339 cites W2196672866 @default.
- W3145208339 cites W2201233344 @default.
- W3145208339 cites W2513449693 @default.
- W3145208339 cites W2543909292 @default.
- W3145208339 cites W2597866042 @default.
- W3145208339 cites W2605614336 @default.
- W3145208339 cites W2776741657 @default.
- W3145208339 cites W2783541729 @default.
- W3145208339 cites W2791047295 @default.
- W3145208339 cites W2798951182 @default.
- W3145208339 cites W2802491896 @default.
- W3145208339 cites W2884234184 @default.
- W3145208339 cites W2887874040 @default.
- W3145208339 cites W2890477073 @default.
- W3145208339 cites W2897658618 @default.
- W3145208339 cites W2910849319 @default.
- W3145208339 cites W2963047498 @default.
- W3145208339 cites W3015209634 @default.
- W3145208339 cites W3032423120 @default.
- W3145208339 cites W3048002811 @default.
- W3145208339 cites W3086484635 @default.
- W3145208339 cites W3095469347 @default.
- W3145208339 cites W3113443958 @default.
- W3145208339 cites W3126081667 @default.
- W3145208339 cites W977807926 @default.
- W3145208339 doi "https://doi.org/10.3390/designs5020027" @default.
- W3145208339 hasPublicationYear "2021" @default.
- W3145208339 type Work @default.
- W3145208339 sameAs 3145208339 @default.
- W3145208339 citedByCount "20" @default.
- W3145208339 countsByYear W31452083392021 @default.
- W3145208339 countsByYear W31452083392022 @default.
- W3145208339 countsByYear W31452083392023 @default.
- W3145208339 crossrefType "journal-article" @default.
- W3145208339 hasAuthorship W3145208339A5013002442 @default.
- W3145208339 hasAuthorship W3145208339A5018639467 @default.
- W3145208339 hasAuthorship W3145208339A5061964126 @default.
- W3145208339 hasAuthorship W3145208339A5078660951 @default.
- W3145208339 hasBestOaLocation W31452083391 @default.
- W3145208339 hasConcept C119599485 @default.
- W3145208339 hasConcept C119857082 @default.
- W3145208339 hasConcept C121332964 @default.
- W3145208339 hasConcept C12267149 @default.
- W3145208339 hasConcept C127413603 @default.
- W3145208339 hasConcept C134560507 @default.
- W3145208339 hasConcept C150217764 @default.
- W3145208339 hasConcept C154945302 @default.
- W3145208339 hasConcept C162324750 @default.
- W3145208339 hasConcept C165801399 @default.
- W3145208339 hasConcept C169258074 @default.
- W3145208339 hasConcept C188573790 @default.
- W3145208339 hasConcept C206658404 @default.
- W3145208339 hasConcept C2779438525 @default.
- W3145208339 hasConcept C41008148 @default.
- W3145208339 hasConcept C50644808 @default.
- W3145208339 hasConcept C61797465 @default.
- W3145208339 hasConcept C62520636 @default.
- W3145208339 hasConcept C77715397 @default.
- W3145208339 hasConceptScore W3145208339C119599485 @default.
- W3145208339 hasConceptScore W3145208339C119857082 @default.
- W3145208339 hasConceptScore W3145208339C121332964 @default.
- W3145208339 hasConceptScore W3145208339C12267149 @default.
- W3145208339 hasConceptScore W3145208339C127413603 @default.
- W3145208339 hasConceptScore W3145208339C134560507 @default.
- W3145208339 hasConceptScore W3145208339C150217764 @default.
- W3145208339 hasConceptScore W3145208339C154945302 @default.
- W3145208339 hasConceptScore W3145208339C162324750 @default.
- W3145208339 hasConceptScore W3145208339C165801399 @default.
- W3145208339 hasConceptScore W3145208339C169258074 @default.
- W3145208339 hasConceptScore W3145208339C188573790 @default.
- W3145208339 hasConceptScore W3145208339C206658404 @default.
- W3145208339 hasConceptScore W3145208339C2779438525 @default.
- W3145208339 hasConceptScore W3145208339C41008148 @default.
- W3145208339 hasConceptScore W3145208339C50644808 @default.
- W3145208339 hasConceptScore W3145208339C61797465 @default.
- W3145208339 hasConceptScore W3145208339C62520636 @default.
- W3145208339 hasConceptScore W3145208339C77715397 @default.
- W3145208339 hasFunder F4320334841 @default.
- W3145208339 hasIssue "2" @default.
- W3145208339 hasLocation W31452083391 @default.
- W3145208339 hasOpenAccess W3145208339 @default.