Matches in SemOpenAlex for { <https://semopenalex.org/work/W3145280681> ?p ?o ?g. }
- W3145280681 endingPage "046041" @default.
- W3145280681 startingPage "046041" @default.
- W3145280681 abstract "Abstract Objective . Low-intensity transcranial ultrasound stimulation (TUS) is a promising non-invasive brain stimulation (NIBS) technique. TUS can reach deeper areas and target smaller regions in the brain than other NIBS techniques, but its application in humans is hampered by the lack of a straightforward and reliable procedure to predict the induced ultrasound exposure. Here, we examined how skull modeling affects computer simulations of TUS. Approach . We characterized the ultrasonic beam after transmission through a sheep skull with a hydrophone and performed computed tomography (CT) image-based simulations of the experimental setup. To study the skull model’s impact, we varied: CT acquisition parameters (tube voltage, dose, filter sharpness), image interpolation, segmentation parameters, acoustic property maps (speed-of-sound, density, attenuation), and transducer-position mismatches. We compared the impact of modeling parameter changes on model predictions and on measurement agreement. Spatial-peak intensity and location, total power, and the Gamma metric (a measure for distribution differences) were used as quantitative criteria. Modeling-based sensitivity analysis was also performed for two human head models. Main results . Sheep skull attenuation assignment and transducer positioning had the most important impact on spatial peak intensity (overestimation up to 300%, respectively 30%), followed by filter sharpness and tube voltage (up to 20%), requiring calibration of the mapping functions. Positioning and skull-heterogeneity-structure strongly affected the intensity distribution (gamma tolerances exceeded in <?CDATA $gt$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mo>></mml:mo> </mml:math> 80%, respectively <?CDATA $gt$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:mo>></mml:mo> </mml:math> 150%, of the focus-volume in water), necessitating image-based personalized modeling. Simulation results in human models consistently demonstrate a high sensitivity to the skull-heterogeneity model, attenuation tuning, and transducer shifts, the magnitude of which depends on the underlying skull structure complexity. Significance . Our study reveals the importance of properly modeling the skull-heterogeneity and its structure and of accurately reproducing the transducer position. The results raise red flags when translating modeling approaches among clinical sites without proper standardization and/or recalibration of the imaging and modeling parameters." @default.
- W3145280681 created "2021-04-13" @default.
- W3145280681 creator A5049159170 @default.
- W3145280681 creator A5055743648 @default.
- W3145280681 creator A5064250454 @default.
- W3145280681 creator A5068386016 @default.
- W3145280681 creator A5068746203 @default.
- W3145280681 creator A5073079682 @default.
- W3145280681 creator A5078355418 @default.
- W3145280681 creator A5086002238 @default.
- W3145280681 date "2021-05-04" @default.
- W3145280681 modified "2023-10-18" @default.
- W3145280681 title "The impact of CT image parameters and skull heterogeneity modeling on the accuracy of transcranial focused ultrasound simulations" @default.
- W3145280681 cites W1965082195 @default.
- W3145280681 cites W1971964702 @default.
- W3145280681 cites W1977329025 @default.
- W3145280681 cites W1979495791 @default.
- W3145280681 cites W1979872711 @default.
- W3145280681 cites W1980154864 @default.
- W3145280681 cites W1986359385 @default.
- W3145280681 cites W1998331485 @default.
- W3145280681 cites W1998437381 @default.
- W3145280681 cites W2006110622 @default.
- W3145280681 cites W2015026123 @default.
- W3145280681 cites W2043919363 @default.
- W3145280681 cites W2052987217 @default.
- W3145280681 cites W2057771740 @default.
- W3145280681 cites W2063812299 @default.
- W3145280681 cites W2068126292 @default.
- W3145280681 cites W2092251257 @default.
- W3145280681 cites W2093245095 @default.
- W3145280681 cites W2105895487 @default.
- W3145280681 cites W2130244962 @default.
- W3145280681 cites W2169057357 @default.
- W3145280681 cites W2181053215 @default.
- W3145280681 cites W2260630904 @default.
- W3145280681 cites W2486698143 @default.
- W3145280681 cites W2523568803 @default.
- W3145280681 cites W2543670854 @default.
- W3145280681 cites W2587443020 @default.
- W3145280681 cites W2791517206 @default.
- W3145280681 cites W2799682544 @default.
- W3145280681 cites W2800453663 @default.
- W3145280681 cites W2802079221 @default.
- W3145280681 cites W2808129625 @default.
- W3145280681 cites W3032655766 @default.
- W3145280681 doi "https://doi.org/10.1088/1741-2552/abf68d" @default.
- W3145280681 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33836508" @default.
- W3145280681 hasPublicationYear "2021" @default.
- W3145280681 type Work @default.
- W3145280681 sameAs 3145280681 @default.
- W3145280681 citedByCount "12" @default.
- W3145280681 countsByYear W31452806812021 @default.
- W3145280681 countsByYear W31452806812022 @default.
- W3145280681 countsByYear W31452806812023 @default.
- W3145280681 crossrefType "journal-article" @default.
- W3145280681 hasAuthorship W3145280681A5049159170 @default.
- W3145280681 hasAuthorship W3145280681A5055743648 @default.
- W3145280681 hasAuthorship W3145280681A5064250454 @default.
- W3145280681 hasAuthorship W3145280681A5068386016 @default.
- W3145280681 hasAuthorship W3145280681A5068746203 @default.
- W3145280681 hasAuthorship W3145280681A5073079682 @default.
- W3145280681 hasAuthorship W3145280681A5078355418 @default.
- W3145280681 hasAuthorship W3145280681A5086002238 @default.
- W3145280681 hasBestOaLocation W31452806812 @default.
- W3145280681 hasConcept C105795698 @default.
- W3145280681 hasConcept C106131492 @default.
- W3145280681 hasConcept C120665830 @default.
- W3145280681 hasConcept C121332964 @default.
- W3145280681 hasConcept C127413603 @default.
- W3145280681 hasConcept C143753070 @default.
- W3145280681 hasConcept C165838908 @default.
- W3145280681 hasConcept C184652730 @default.
- W3145280681 hasConcept C192562407 @default.
- W3145280681 hasConcept C21200559 @default.
- W3145280681 hasConcept C24326235 @default.
- W3145280681 hasConcept C24890656 @default.
- W3145280681 hasConcept C31972630 @default.
- W3145280681 hasConcept C33923547 @default.
- W3145280681 hasConcept C41008148 @default.
- W3145280681 hasConcept C56318395 @default.
- W3145280681 hasConcept C93038891 @default.
- W3145280681 hasConceptScore W3145280681C105795698 @default.
- W3145280681 hasConceptScore W3145280681C106131492 @default.
- W3145280681 hasConceptScore W3145280681C120665830 @default.
- W3145280681 hasConceptScore W3145280681C121332964 @default.
- W3145280681 hasConceptScore W3145280681C127413603 @default.
- W3145280681 hasConceptScore W3145280681C143753070 @default.
- W3145280681 hasConceptScore W3145280681C165838908 @default.
- W3145280681 hasConceptScore W3145280681C184652730 @default.
- W3145280681 hasConceptScore W3145280681C192562407 @default.
- W3145280681 hasConceptScore W3145280681C21200559 @default.
- W3145280681 hasConceptScore W3145280681C24326235 @default.
- W3145280681 hasConceptScore W3145280681C24890656 @default.
- W3145280681 hasConceptScore W3145280681C31972630 @default.
- W3145280681 hasConceptScore W3145280681C33923547 @default.
- W3145280681 hasConceptScore W3145280681C41008148 @default.
- W3145280681 hasConceptScore W3145280681C56318395 @default.