Matches in SemOpenAlex for { <https://semopenalex.org/work/W3145459305> ?p ?o ?g. }
- W3145459305 endingPage "51" @default.
- W3145459305 startingPage "41" @default.
- W3145459305 abstract "Skin cancer is among the primary cancer types that manifest due to various dermatological disorders, which may be further classified into several types based on morphological features, color, structure, and texture. The mortality rate of patients who have skin cancer is contingent on preliminary and rapid detection and diagnosis of malignant skin cancer cells. Limitations in current dermoscopic images, including shadow, artifact, and noise, affect image quality, which may hamper detection effort. Attempts to overcome these challenges have been made by analyzing the images using deep learning neural networks to perform skin cancer detection. In this paper, the authors review the state-of-the-art in authoritative deep learning concepts pertinent to skin cancer detection and classification." @default.
- W3145459305 created "2021-04-13" @default.
- W3145459305 creator A5084486465 @default.
- W3145459305 creator A5087996799 @default.
- W3145459305 date "2021-03-31" @default.
- W3145459305 modified "2023-10-16" @default.
- W3145459305 title "Skin Lesion Classification Based on Deep Convolutional Neural Networks Architectures" @default.
- W3145459305 cites W2061253660 @default.
- W3145459305 cites W2545929884 @default.
- W3145459305 cites W2592929672 @default.
- W3145459305 cites W2609625738 @default.
- W3145459305 cites W2748641035 @default.
- W3145459305 cites W2753863096 @default.
- W3145459305 cites W2780611063 @default.
- W3145459305 cites W2788686457 @default.
- W3145459305 cites W2789357239 @default.
- W3145459305 cites W2789876780 @default.
- W3145459305 cites W2791867717 @default.
- W3145459305 cites W2793076225 @default.
- W3145459305 cites W2797527544 @default.
- W3145459305 cites W2804411430 @default.
- W3145459305 cites W2899142219 @default.
- W3145459305 cites W2899425762 @default.
- W3145459305 cites W2901051598 @default.
- W3145459305 cites W2901333326 @default.
- W3145459305 cites W2911653980 @default.
- W3145459305 cites W2911818805 @default.
- W3145459305 cites W2914562953 @default.
- W3145459305 cites W2922703796 @default.
- W3145459305 cites W2940790545 @default.
- W3145459305 cites W2945717565 @default.
- W3145459305 cites W2946122943 @default.
- W3145459305 cites W2946865928 @default.
- W3145459305 cites W2946869992 @default.
- W3145459305 cites W2947787176 @default.
- W3145459305 cites W2947943128 @default.
- W3145459305 cites W2963946669 @default.
- W3145459305 cites W2966905935 @default.
- W3145459305 cites W2969790209 @default.
- W3145459305 cites W2970098657 @default.
- W3145459305 cites W2979830539 @default.
- W3145459305 cites W2980126753 @default.
- W3145459305 cites W2994842153 @default.
- W3145459305 cites W2996717109 @default.
- W3145459305 cites W3001446745 @default.
- W3145459305 cites W3003544448 @default.
- W3145459305 cites W3005753059 @default.
- W3145459305 cites W3008340783 @default.
- W3145459305 cites W3014862947 @default.
- W3145459305 cites W3015172677 @default.
- W3145459305 cites W3015806114 @default.
- W3145459305 cites W3018821700 @default.
- W3145459305 cites W3019179251 @default.
- W3145459305 cites W3022365663 @default.
- W3145459305 cites W3024333932 @default.
- W3145459305 cites W3024756171 @default.
- W3145459305 cites W3028742747 @default.
- W3145459305 cites W3029477994 @default.
- W3145459305 cites W3036365526 @default.
- W3145459305 cites W3037436903 @default.
- W3145459305 cites W3041507802 @default.
- W3145459305 cites W3041531631 @default.
- W3145459305 cites W3045334317 @default.
- W3145459305 cites W3047435686 @default.
- W3145459305 cites W3048126454 @default.
- W3145459305 cites W3048173824 @default.
- W3145459305 cites W3084022444 @default.
- W3145459305 cites W3085662775 @default.
- W3145459305 cites W3085674933 @default.
- W3145459305 cites W3093158364 @default.
- W3145459305 cites W3094329596 @default.
- W3145459305 cites W3102785203 @default.
- W3145459305 cites W3119347605 @default.
- W3145459305 cites W3121874409 @default.
- W3145459305 cites W3135320369 @default.
- W3145459305 cites W3151056240 @default.
- W3145459305 cites W2605395803 @default.
- W3145459305 doi "https://doi.org/10.38094/jastt20189" @default.
- W3145459305 hasPublicationYear "2021" @default.
- W3145459305 type Work @default.
- W3145459305 sameAs 3145459305 @default.
- W3145459305 citedByCount "33" @default.
- W3145459305 countsByYear W31454593052021 @default.
- W3145459305 countsByYear W31454593052022 @default.
- W3145459305 countsByYear W31454593052023 @default.
- W3145459305 crossrefType "journal-article" @default.
- W3145459305 hasAuthorship W3145459305A5084486465 @default.
- W3145459305 hasAuthorship W3145459305A5087996799 @default.
- W3145459305 hasBestOaLocation W31454593051 @default.
- W3145459305 hasConcept C108583219 @default.
- W3145459305 hasConcept C117797892 @default.
- W3145459305 hasConcept C119857082 @default.
- W3145459305 hasConcept C121608353 @default.
- W3145459305 hasConcept C126322002 @default.
- W3145459305 hasConcept C153180895 @default.
- W3145459305 hasConcept C154945302 @default.
- W3145459305 hasConcept C15744967 @default.
- W3145459305 hasConcept C16005928 @default.