Matches in SemOpenAlex for { <https://semopenalex.org/work/W3145522090> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3145522090 abstract "Network Intrusion Detection Systems (NIDS) have been the most effective defense mechanism against various network attacks. As attack patterns have been intelligently and dynamically evolving, the deep learning-based NIDSs have been widely adopted to improve intrusion detection accuracy. Autoencoders, one of the unsupervised neural networks, are generative deep learning models that learn to represent the data as compressed vectors without class labels. Recently, various autoencoder–generative deep learning models–have been used for NIDS in order to efficiently alleviate the laborious labeling and to effectively detect unknown types of attacks (i.e. zero-day attacks). In spite of the effectiveness of autoencoders in detecting intrusions, it requires tremendous effort to identify the optimal model architecture of the autoencoders that results in the best performance, which is an obstacle for practical applications. To address this challenge, this paper rigorously studies autoencoders with two important factors using real network data. We investigate how the size of a latent layer and the size of the model influence the detection performance. We evaluate our autoencoder model using the IDS benchmark data sets and present the experimental findings." @default.
- W3145522090 created "2021-04-13" @default.
- W3145522090 creator A5045525095 @default.
- W3145522090 creator A5072665849 @default.
- W3145522090 creator A5087179276 @default.
- W3145522090 date "2021-01-01" @default.
- W3145522090 modified "2023-09-24" @default.
- W3145522090 title "A Systematic Approach to Building Autoencoders for Intrusion Detection" @default.
- W3145522090 cites W111228695 @default.
- W3145522090 cites W1679074130 @default.
- W3145522090 cites W2052387539 @default.
- W3145522090 cites W2099940443 @default.
- W3145522090 cites W2142889610 @default.
- W3145522090 cites W2267339884 @default.
- W3145522090 cites W2302958273 @default.
- W3145522090 cites W2335999708 @default.
- W3145522090 cites W2342408547 @default.
- W3145522090 cites W2399941526 @default.
- W3145522090 cites W2541841318 @default.
- W3145522090 cites W2736937187 @default.
- W3145522090 cites W2749908420 @default.
- W3145522090 cites W2789828921 @default.
- W3145522090 cites W2867534720 @default.
- W3145522090 cites W2922628727 @default.
- W3145522090 cites W2963262350 @default.
- W3145522090 cites W3035311645 @default.
- W3145522090 doi "https://doi.org/10.1007/978-3-030-72725-3_14" @default.
- W3145522090 hasPublicationYear "2021" @default.
- W3145522090 type Work @default.
- W3145522090 sameAs 3145522090 @default.
- W3145522090 citedByCount "1" @default.
- W3145522090 countsByYear W31455220902022 @default.
- W3145522090 crossrefType "book-chapter" @default.
- W3145522090 hasAuthorship W3145522090A5045525095 @default.
- W3145522090 hasAuthorship W3145522090A5072665849 @default.
- W3145522090 hasAuthorship W3145522090A5087179276 @default.
- W3145522090 hasConcept C101738243 @default.
- W3145522090 hasConcept C108583219 @default.
- W3145522090 hasConcept C119857082 @default.
- W3145522090 hasConcept C124101348 @default.
- W3145522090 hasConcept C13280743 @default.
- W3145522090 hasConcept C153180895 @default.
- W3145522090 hasConcept C154945302 @default.
- W3145522090 hasConcept C167966045 @default.
- W3145522090 hasConcept C185798385 @default.
- W3145522090 hasConcept C205649164 @default.
- W3145522090 hasConcept C35525427 @default.
- W3145522090 hasConcept C39890363 @default.
- W3145522090 hasConcept C41008148 @default.
- W3145522090 hasConcept C50644808 @default.
- W3145522090 hasConceptScore W3145522090C101738243 @default.
- W3145522090 hasConceptScore W3145522090C108583219 @default.
- W3145522090 hasConceptScore W3145522090C119857082 @default.
- W3145522090 hasConceptScore W3145522090C124101348 @default.
- W3145522090 hasConceptScore W3145522090C13280743 @default.
- W3145522090 hasConceptScore W3145522090C153180895 @default.
- W3145522090 hasConceptScore W3145522090C154945302 @default.
- W3145522090 hasConceptScore W3145522090C167966045 @default.
- W3145522090 hasConceptScore W3145522090C185798385 @default.
- W3145522090 hasConceptScore W3145522090C205649164 @default.
- W3145522090 hasConceptScore W3145522090C35525427 @default.
- W3145522090 hasConceptScore W3145522090C39890363 @default.
- W3145522090 hasConceptScore W3145522090C41008148 @default.
- W3145522090 hasConceptScore W3145522090C50644808 @default.
- W3145522090 hasLocation W31455220901 @default.
- W3145522090 hasOpenAccess W3145522090 @default.
- W3145522090 hasPrimaryLocation W31455220901 @default.
- W3145522090 hasRelatedWork W11389402 @default.
- W3145522090 hasRelatedWork W12829028 @default.
- W3145522090 hasRelatedWork W2701911 @default.
- W3145522090 hasRelatedWork W351505 @default.
- W3145522090 hasRelatedWork W4771408 @default.
- W3145522090 hasRelatedWork W6001892 @default.
- W3145522090 hasRelatedWork W6680660 @default.
- W3145522090 hasRelatedWork W728297 @default.
- W3145522090 hasRelatedWork W8787759 @default.
- W3145522090 hasRelatedWork W9190101 @default.
- W3145522090 isParatext "false" @default.
- W3145522090 isRetracted "false" @default.
- W3145522090 magId "3145522090" @default.
- W3145522090 workType "book-chapter" @default.