Matches in SemOpenAlex for { <https://semopenalex.org/work/W3145604857> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3145604857 abstract "Using the modified Kunstatter method, which employs as proper frequency the imaginary part instead of the real part of the quasinormal modes, the entropy spectrum and area spectrum of the modified Schwarzschild black holes in gravity’s rainbow are investigated. In the current study, two cases of modified dispersion relations concerning energy dependent and energy independent speed of light are considered. The entropy spectra with equal spacing are derived in these two cases. Furthermore, the obtained entropy spectra are independent of the energy of a test particle and are the same as the one of the usual Schwarzschild black hole. Also, the same area spectrum formulas are obtained in these different dispersion relations. However, due to the quantum effect of spacetime, the obtained area spectra are not equally spaced and are different from the one of the usual Schwarzschild black hole. Besides, in these two cases, the same black hole entropy formulas with logarithmic correction to the standard Bekenstein–Hawking area formula are obtained by the adiabatic invariant. The form of area spacing formulas and entropy formulas are independent of the particle’s energy, but the area spacing and entropy can have energy dependence through the area. In 1972, considering black holes emitting or absorbing quanta, Bekenstein proposed that black hole entropy is proportional to horizon area and the area is quantized [1]. It was proposed that the minimum increase of horizon area can be obtained by the absorption of a test particle and expressed as [1] ( A)min = eG , (1) where e is an undetermined dimensionless constant and the unit of c= kB = 1 is used. Motivated by this proposal, many researches have been made to derive the quantum spectrum a e-mail: czlbj20@yahoo.com.cn of black holes and different spectra with different e have been presented [2–28]. Bekenstein put forward that e = 8π [2–5], that is, the black hole area quantum was ( A)min = 8πG . (2) Therein, by considering the horizon area as an adiabatic invariant, the black hole quantization was implemented and the area spectrum (2) was presented [3–5]. In addition, the quantization of black holes was also posed from the quasinormal modes (QNMs) of black holes. The QNMs is a set of complex frequencies that describe the response of black holes to a perturbation (see [29] for a review). Based on Bohr’s correspondence, Hod argued that [6, 7], the highly damped QNMs of black holes should be identical to the quantum transition of the corresponding systems and the real part of the asymptotic QNMs should be equal to the quantum transition frequency. Then, letting the radiation energy ωc equal the energy change of black holes, the QNMs were related to the quantization of black holes. Later, the proposal of black hole horizon area being an adiabatic invariant and the method of relating the QNMs to black hole quantization were united by Kunstatter [8]. It was shown that, for a system with energy E and vibrational frequency ω(E), there is a natural adiabatic invariant, I = ∫ dE ω(E) . Further, as a semiclassical limit, a black hole with transition frequency can be considered as a classical system of periodic motion with the vibrational frequency equal to the real part of the QNMs. Then, following the Bohr–Sommerfeld quantization rule I = n and considering the black hole energy as the ADM mass, Kunstatter obtained an adiabatic invariant formula for the Schwarzschild black hole as [8]" @default.
- W3145604857 created "2021-04-13" @default.
- W3145604857 creator A5023065400 @default.
- W3145604857 date "2012-01-01" @default.
- W3145604857 modified "2023-09-27" @default.
- W3145604857 title "Black hole spectroscopy via adiabatic invariant in a quantum corrected spacetime" @default.
- W3145604857 hasPublicationYear "2012" @default.
- W3145604857 type Work @default.
- W3145604857 sameAs 3145604857 @default.
- W3145604857 citedByCount "0" @default.
- W3145604857 crossrefType "journal-article" @default.
- W3145604857 hasAuthorship W3145604857A5023065400 @default.
- W3145604857 hasConcept C104062141 @default.
- W3145604857 hasConcept C104954878 @default.
- W3145604857 hasConcept C106301342 @default.
- W3145604857 hasConcept C109663097 @default.
- W3145604857 hasConcept C115304011 @default.
- W3145604857 hasConcept C121332964 @default.
- W3145604857 hasConcept C130187892 @default.
- W3145604857 hasConcept C133576831 @default.
- W3145604857 hasConcept C136125196 @default.
- W3145604857 hasConcept C144951741 @default.
- W3145604857 hasConcept C147452769 @default.
- W3145604857 hasConcept C183915046 @default.
- W3145604857 hasConcept C3079626 @default.
- W3145604857 hasConcept C31258907 @default.
- W3145604857 hasConcept C40745267 @default.
- W3145604857 hasConcept C41008148 @default.
- W3145604857 hasConcept C50341732 @default.
- W3145604857 hasConcept C62520636 @default.
- W3145604857 hasConcept C74172769 @default.
- W3145604857 hasConcept C74650414 @default.
- W3145604857 hasConcept C89305328 @default.
- W3145604857 hasConceptScore W3145604857C104062141 @default.
- W3145604857 hasConceptScore W3145604857C104954878 @default.
- W3145604857 hasConceptScore W3145604857C106301342 @default.
- W3145604857 hasConceptScore W3145604857C109663097 @default.
- W3145604857 hasConceptScore W3145604857C115304011 @default.
- W3145604857 hasConceptScore W3145604857C121332964 @default.
- W3145604857 hasConceptScore W3145604857C130187892 @default.
- W3145604857 hasConceptScore W3145604857C133576831 @default.
- W3145604857 hasConceptScore W3145604857C136125196 @default.
- W3145604857 hasConceptScore W3145604857C144951741 @default.
- W3145604857 hasConceptScore W3145604857C147452769 @default.
- W3145604857 hasConceptScore W3145604857C183915046 @default.
- W3145604857 hasConceptScore W3145604857C3079626 @default.
- W3145604857 hasConceptScore W3145604857C31258907 @default.
- W3145604857 hasConceptScore W3145604857C40745267 @default.
- W3145604857 hasConceptScore W3145604857C41008148 @default.
- W3145604857 hasConceptScore W3145604857C50341732 @default.
- W3145604857 hasConceptScore W3145604857C62520636 @default.
- W3145604857 hasConceptScore W3145604857C74172769 @default.
- W3145604857 hasConceptScore W3145604857C74650414 @default.
- W3145604857 hasConceptScore W3145604857C89305328 @default.
- W3145604857 hasLocation W31456048571 @default.
- W3145604857 hasOpenAccess W3145604857 @default.
- W3145604857 hasPrimaryLocation W31456048571 @default.
- W3145604857 hasRelatedWork W1493842051 @default.
- W3145604857 hasRelatedWork W1524653695 @default.
- W3145604857 hasRelatedWork W1628087361 @default.
- W3145604857 hasRelatedWork W1632128490 @default.
- W3145604857 hasRelatedWork W1679113278 @default.
- W3145604857 hasRelatedWork W1993043716 @default.
- W3145604857 hasRelatedWork W2018545716 @default.
- W3145604857 hasRelatedWork W2027523102 @default.
- W3145604857 hasRelatedWork W2035062435 @default.
- W3145604857 hasRelatedWork W2052144100 @default.
- W3145604857 hasRelatedWork W2075737963 @default.
- W3145604857 hasRelatedWork W2079340777 @default.
- W3145604857 hasRelatedWork W2137633296 @default.
- W3145604857 hasRelatedWork W2142376717 @default.
- W3145604857 hasRelatedWork W2142935025 @default.
- W3145604857 hasRelatedWork W2241512714 @default.
- W3145604857 hasRelatedWork W2337726657 @default.
- W3145604857 hasRelatedWork W2383000316 @default.
- W3145604857 hasRelatedWork W2921877227 @default.
- W3145604857 hasRelatedWork W2990698213 @default.
- W3145604857 isParatext "false" @default.
- W3145604857 isRetracted "false" @default.
- W3145604857 magId "3145604857" @default.
- W3145604857 workType "article" @default.