Matches in SemOpenAlex for { <https://semopenalex.org/work/W3145671690> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3145671690 abstract "The beginning of a global reorientation towards an increasingly conscientious approach to nature and the human habitat has been accompanied by changes in industry and society. The automotive industry, where a transition from combustion to electrically powered vehicles is currently underway, is also concerned with this change. In addition to increasing the capacity of the battery, improving the efficiency of the electric motor is essential. To achieve these goals, however, new technologies such as hairpins for the stator are needed. An important process step involves the welding of two pairs of hairpins, which often leads to welding defects. Nevertheless, expert knowledge in this field is limited. Optical monitoring of the welding process with the help of a convolutional neural network (CNN) is a good approach. This approach can compensate for the low level of expert knowledge and detects and classifies welding defects directly in the production line. However, the disadvantage of optical monitoring is that production conditions and the surrounding environment change over time. This has an impact on optical detection and can negatively affect the accuracy of a CNN. For example, the camera perspective can change, which has a negative effect on optical quality monitoring. Therefore, this paper presents an approach for monitoring and evaluating the quality of a CNN in a cloud instance online. If a deteriorating quality is detected, the CNN in the cloud is re-trained by continuously collected data and then automatically deployed to the production line. This allows the CNN to adapt to the changing environmental conditions. The present approach is demonstrated and validated with real data of the stator production process. Compared with the current state-of-the-art, this control loop is highly automated and requires a minimum of human intervention." @default.
- W3145671690 created "2021-04-13" @default.
- W3145671690 creator A5029739081 @default.
- W3145671690 creator A5031001145 @default.
- W3145671690 creator A5050539831 @default.
- W3145671690 creator A5063781430 @default.
- W3145671690 creator A5080727625 @default.
- W3145671690 date "2020-12-08" @default.
- W3145671690 modified "2023-10-06" @default.
- W3145671690 title "Development of a Cloud- and Edge-Architecture for adaptive model weight optimization of a CNN exemplified by optical detection of hairpin welding" @default.
- W3145671690 cites W2027495733 @default.
- W3145671690 cites W2093559072 @default.
- W3145671690 cites W2094756095 @default.
- W3145671690 cites W2133665775 @default.
- W3145671690 cites W2500751094 @default.
- W3145671690 cites W2593657034 @default.
- W3145671690 cites W2615776610 @default.
- W3145671690 cites W2799112149 @default.
- W3145671690 cites W2902486278 @default.
- W3145671690 cites W2912272978 @default.
- W3145671690 cites W2913429812 @default.
- W3145671690 cites W2921209771 @default.
- W3145671690 cites W3009330649 @default.
- W3145671690 doi "https://doi.org/10.1109/edpc51184.2020.9388192" @default.
- W3145671690 hasPublicationYear "2020" @default.
- W3145671690 type Work @default.
- W3145671690 sameAs 3145671690 @default.
- W3145671690 citedByCount "2" @default.
- W3145671690 countsByYear W31456716902023 @default.
- W3145671690 crossrefType "proceedings-article" @default.
- W3145671690 hasAuthorship W3145671690A5029739081 @default.
- W3145671690 hasAuthorship W3145671690A5031001145 @default.
- W3145671690 hasAuthorship W3145671690A5050539831 @default.
- W3145671690 hasAuthorship W3145671690A5063781430 @default.
- W3145671690 hasAuthorship W3145671690A5080727625 @default.
- W3145671690 hasBestOaLocation W31456716902 @default.
- W3145671690 hasConcept C111919701 @default.
- W3145671690 hasConcept C127413603 @default.
- W3145671690 hasConcept C146978453 @default.
- W3145671690 hasConcept C154945302 @default.
- W3145671690 hasConcept C19474535 @default.
- W3145671690 hasConcept C41008148 @default.
- W3145671690 hasConcept C526921623 @default.
- W3145671690 hasConcept C78519656 @default.
- W3145671690 hasConcept C79403827 @default.
- W3145671690 hasConcept C79974875 @default.
- W3145671690 hasConcept C81363708 @default.
- W3145671690 hasConcept C98045186 @default.
- W3145671690 hasConceptScore W3145671690C111919701 @default.
- W3145671690 hasConceptScore W3145671690C127413603 @default.
- W3145671690 hasConceptScore W3145671690C146978453 @default.
- W3145671690 hasConceptScore W3145671690C154945302 @default.
- W3145671690 hasConceptScore W3145671690C19474535 @default.
- W3145671690 hasConceptScore W3145671690C41008148 @default.
- W3145671690 hasConceptScore W3145671690C526921623 @default.
- W3145671690 hasConceptScore W3145671690C78519656 @default.
- W3145671690 hasConceptScore W3145671690C79403827 @default.
- W3145671690 hasConceptScore W3145671690C79974875 @default.
- W3145671690 hasConceptScore W3145671690C81363708 @default.
- W3145671690 hasConceptScore W3145671690C98045186 @default.
- W3145671690 hasLocation W31456716901 @default.
- W3145671690 hasLocation W31456716902 @default.
- W3145671690 hasOpenAccess W3145671690 @default.
- W3145671690 hasPrimaryLocation W31456716901 @default.
- W3145671690 hasRelatedWork W2383532021 @default.
- W3145671690 hasRelatedWork W2521062615 @default.
- W3145671690 hasRelatedWork W2735477435 @default.
- W3145671690 hasRelatedWork W2807436399 @default.
- W3145671690 hasRelatedWork W3016958897 @default.
- W3145671690 hasRelatedWork W3045739591 @default.
- W3145671690 hasRelatedWork W3170727297 @default.
- W3145671690 hasRelatedWork W3181746755 @default.
- W3145671690 hasRelatedWork W4283379348 @default.
- W3145671690 hasRelatedWork W4312417841 @default.
- W3145671690 isParatext "false" @default.
- W3145671690 isRetracted "false" @default.
- W3145671690 magId "3145671690" @default.
- W3145671690 workType "article" @default.