Matches in SemOpenAlex for { <https://semopenalex.org/work/W3145752794> ?p ?o ?g. }
- W3145752794 abstract "Land-cover mapping is one of the foundations of Earth science. As a result of the combined efforts of many scientists, numerous global land-cover (GLC) products with a resolution of 30 m have so far been generated. However, the increasing number of fine-resolution GLC datasets is imposing additional workloads as it is necessary to confirm the quality of these datasets and check their suitability for user applications. To provide guidelines for users, in this study, the recent developments in currently available 30 m GLC products (including three GLC products and thematic products for four different land-cover types, i.e., impervious surface, forest, cropland, and inland water) were first reviewed. Despite the great efforts toward improving mapping accuracy that there have been in recent decades, the current 30 m GLC products still suffer from having relatively low accuracies of between 46.0% and 88.9% for GlobeLand30-2010, 57.71% and 80.36% for FROM_GLC-2015, and 65.59% and 84.33% for GLC_FCS30-2015. The reported accuracies for the global 30 m thematic maps vary from 67.86% to 95.1% for the eight impervious surface products that were reviewed, 56.72% to 97.36% for the seven forest products, 32.73% to 98.3% for the six cropland products, and 15.67% to 99.7% for the six inland water products. The consistency between the current GLC products was then examined. The GLC maps showed a good overall agreement in terms of spatial patterns but a limited agreement for some vegetation classes (such as shrub, tree, and grassland) in specific areas such as transition zones. Finally, the prospects for fine-resolution GLC mapping were also considered. With the rapid development of cloud computing platforms and big data, the Google Earth Engine (GEE) greatly facilitates the production of global fine-resolution land-cover maps by integrating multisource remote sensing datasets with advanced image processing and classification algorithms and powerful computing capability. The synergy between the spectral, spatial, and temporal features derived from multisource satellite datasets and stored in cloud computing platforms will definitely improve the classification accuracy and spatiotemporal resolution of fine-resolution GLC products. In general, up to now, most land-cover maps have not been able to achieve the maximum (per class or overall) error of 5%–15% required by many applications. Therefore, more efforts are needed toward improving the accuracy of these GLC products, especially for classes for which the accuracy has so far been low (such as shrub, wetland, tundra, and grassland) and in terms of the overall quality of the maps." @default.
- W3145752794 created "2021-04-13" @default.
- W3145752794 creator A5019584991 @default.
- W3145752794 creator A5031065239 @default.
- W3145752794 creator A5033465960 @default.
- W3145752794 creator A5055527180 @default.
- W3145752794 creator A5075266638 @default.
- W3145752794 creator A5081960384 @default.
- W3145752794 date "2021-01-01" @default.
- W3145752794 modified "2023-10-15" @default.
- W3145752794 title "Finer-Resolution Mapping of Global Land Cover: Recent Developments, Consistency Analysis, and Prospects" @default.
- W3145752794 cites W1254560965 @default.
- W3145752794 cites W1852275419 @default.
- W3145752794 cites W1915168785 @default.
- W3145752794 cites W1967906870 @default.
- W3145752794 cites W1968378717 @default.
- W3145752794 cites W1980385468 @default.
- W3145752794 cites W1981213426 @default.
- W3145752794 cites W1988032609 @default.
- W3145752794 cites W1991145689 @default.
- W3145752794 cites W1997980023 @default.
- W3145752794 cites W2001510610 @default.
- W3145752794 cites W2001728294 @default.
- W3145752794 cites W2003916298 @default.
- W3145752794 cites W2006929658 @default.
- W3145752794 cites W2012950829 @default.
- W3145752794 cites W2020795785 @default.
- W3145752794 cites W2021291741 @default.
- W3145752794 cites W2022204818 @default.
- W3145752794 cites W2036798369 @default.
- W3145752794 cites W2038227312 @default.
- W3145752794 cites W2040667072 @default.
- W3145752794 cites W2042692910 @default.
- W3145752794 cites W2042737933 @default.
- W3145752794 cites W2043540570 @default.
- W3145752794 cites W2053886687 @default.
- W3145752794 cites W2055718260 @default.
- W3145752794 cites W2072465375 @default.
- W3145752794 cites W2090574315 @default.
- W3145752794 cites W2095410437 @default.
- W3145752794 cites W2103423142 @default.
- W3145752794 cites W2114828048 @default.
- W3145752794 cites W2126822288 @default.
- W3145752794 cites W2129305329 @default.
- W3145752794 cites W2147462896 @default.
- W3145752794 cites W2159773298 @default.
- W3145752794 cites W2176635760 @default.
- W3145752794 cites W2192883182 @default.
- W3145752794 cites W2234850500 @default.
- W3145752794 cites W2278061527 @default.
- W3145752794 cites W2290682182 @default.
- W3145752794 cites W2307094448 @default.
- W3145752794 cites W2346766736 @default.
- W3145752794 cites W2347036094 @default.
- W3145752794 cites W2418025955 @default.
- W3145752794 cites W2492296866 @default.
- W3145752794 cites W2499167284 @default.
- W3145752794 cites W2531185277 @default.
- W3145752794 cites W2548610061 @default.
- W3145752794 cites W2560167313 @default.
- W3145752794 cites W2568420287 @default.
- W3145752794 cites W2568520654 @default.
- W3145752794 cites W2575355226 @default.
- W3145752794 cites W2583992681 @default.
- W3145752794 cites W2584198282 @default.
- W3145752794 cites W2584743460 @default.
- W3145752794 cites W2592712793 @default.
- W3145752794 cites W2606982998 @default.
- W3145752794 cites W2609578799 @default.
- W3145752794 cites W2612815007 @default.
- W3145752794 cites W2614032618 @default.
- W3145752794 cites W2619820913 @default.
- W3145752794 cites W2621021710 @default.
- W3145752794 cites W2624779149 @default.
- W3145752794 cites W2725897987 @default.
- W3145752794 cites W2736896525 @default.
- W3145752794 cites W2737468510 @default.
- W3145752794 cites W2744525400 @default.
- W3145752794 cites W2751954430 @default.
- W3145752794 cites W2763014865 @default.
- W3145752794 cites W2766235911 @default.
- W3145752794 cites W2766727660 @default.
- W3145752794 cites W2768686265 @default.
- W3145752794 cites W2774175635 @default.
- W3145752794 cites W2774558171 @default.
- W3145752794 cites W2792652901 @default.
- W3145752794 cites W2793327769 @default.
- W3145752794 cites W2795268736 @default.
- W3145752794 cites W2805691427 @default.
- W3145752794 cites W2885406917 @default.
- W3145752794 cites W2885908041 @default.
- W3145752794 cites W2897344053 @default.
- W3145752794 cites W2901762107 @default.
- W3145752794 cites W2901901507 @default.
- W3145752794 cites W2906848991 @default.
- W3145752794 cites W2908649448 @default.
- W3145752794 cites W2920254659 @default.
- W3145752794 cites W2922502341 @default.
- W3145752794 cites W2929921519 @default.
- W3145752794 cites W2935551676 @default.