Matches in SemOpenAlex for { <https://semopenalex.org/work/W3145757556> ?p ?o ?g. }
- W3145757556 endingPage "107315" @default.
- W3145757556 startingPage "107315" @default.
- W3145757556 abstract "Abstract Precise control over dimension of nanocrystals is critical to tune the properties for various applications. However, the traditional control through experimental optimization is slow, tedious and time consuming. Herein a robust deep neural network-based regression algorithm has been developed for precise prediction of length, width, and aspect ratios of semiconductor nanorods (NRs). Given there is limited experimental data available (28 samples), a Synthetic Minority Oversampling Technique for regression (SMOTE-REG) is employed first for data generation. Deep neural network is further applied to develop regression model which demonstrated the well performed prediction on both the original and generated data with a similar distribution. The prediction model is further validated with additional experimental data, showing accurate prediction results. Additionally, Local Interpretable Model-Agnostic Explanations (LIME) is used to interpret the weight for each sample, corresponding to its importance towards the target dimension, which is well validated by experimental observations." @default.
- W3145757556 created "2021-04-13" @default.
- W3145757556 creator A5000988450 @default.
- W3145757556 creator A5023696431 @default.
- W3145757556 creator A5043267366 @default.
- W3145757556 creator A5055234298 @default.
- W3145757556 creator A5058314532 @default.
- W3145757556 creator A5084208504 @default.
- W3145757556 creator A5085344547 @default.
- W3145757556 date "2021-07-01" @default.
- W3145757556 modified "2023-10-16" @default.
- W3145757556 title "A robust low data solution: Dimension prediction of semiconductor nanorods" @default.
- W3145757556 cites W1865667476 @default.
- W3145757556 cites W1975829026 @default.
- W3145757556 cites W1981829631 @default.
- W3145757556 cites W1990752779 @default.
- W3145757556 cites W1995734581 @default.
- W3145757556 cites W2008679955 @default.
- W3145757556 cites W2029445495 @default.
- W3145757556 cites W2034459632 @default.
- W3145757556 cites W2035500973 @default.
- W3145757556 cites W2040181375 @default.
- W3145757556 cites W2048075837 @default.
- W3145757556 cites W2065989808 @default.
- W3145757556 cites W2070809909 @default.
- W3145757556 cites W2074644185 @default.
- W3145757556 cites W2087273713 @default.
- W3145757556 cites W2090716448 @default.
- W3145757556 cites W2101130956 @default.
- W3145757556 cites W2116027753 @default.
- W3145757556 cites W2124458979 @default.
- W3145757556 cites W2148143831 @default.
- W3145757556 cites W2239776576 @default.
- W3145757556 cites W2276614849 @default.
- W3145757556 cites W2288678021 @default.
- W3145757556 cites W2299260139 @default.
- W3145757556 cites W2319983382 @default.
- W3145757556 cites W2321541451 @default.
- W3145757556 cites W2516628666 @default.
- W3145757556 cites W2607282602 @default.
- W3145757556 cites W2616519837 @default.
- W3145757556 cites W2623634786 @default.
- W3145757556 cites W2800722845 @default.
- W3145757556 cites W2940802411 @default.
- W3145757556 cites W2943292325 @default.
- W3145757556 cites W2963714024 @default.
- W3145757556 cites W2974398461 @default.
- W3145757556 cites W3012025339 @default.
- W3145757556 cites W3031157367 @default.
- W3145757556 cites W3047184465 @default.
- W3145757556 cites W3047286661 @default.
- W3145757556 cites W4210753053 @default.
- W3145757556 doi "https://doi.org/10.1016/j.compchemeng.2021.107315" @default.
- W3145757556 hasPublicationYear "2021" @default.
- W3145757556 type Work @default.
- W3145757556 sameAs 3145757556 @default.
- W3145757556 citedByCount "4" @default.
- W3145757556 countsByYear W31457575562022 @default.
- W3145757556 countsByYear W31457575562023 @default.
- W3145757556 crossrefType "journal-article" @default.
- W3145757556 hasAuthorship W3145757556A5000988450 @default.
- W3145757556 hasAuthorship W3145757556A5023696431 @default.
- W3145757556 hasAuthorship W3145757556A5043267366 @default.
- W3145757556 hasAuthorship W3145757556A5055234298 @default.
- W3145757556 hasAuthorship W3145757556A5058314532 @default.
- W3145757556 hasAuthorship W3145757556A5084208504 @default.
- W3145757556 hasAuthorship W3145757556A5085344547 @default.
- W3145757556 hasBestOaLocation W31457575562 @default.
- W3145757556 hasConcept C108225325 @default.
- W3145757556 hasConcept C114614502 @default.
- W3145757556 hasConcept C126201875 @default.
- W3145757556 hasConcept C171250308 @default.
- W3145757556 hasConcept C186060115 @default.
- W3145757556 hasConcept C192562407 @default.
- W3145757556 hasConcept C33676613 @default.
- W3145757556 hasConcept C33923547 @default.
- W3145757556 hasConcept C41008148 @default.
- W3145757556 hasConcept C49040817 @default.
- W3145757556 hasConcept C86803240 @default.
- W3145757556 hasConceptScore W3145757556C108225325 @default.
- W3145757556 hasConceptScore W3145757556C114614502 @default.
- W3145757556 hasConceptScore W3145757556C126201875 @default.
- W3145757556 hasConceptScore W3145757556C171250308 @default.
- W3145757556 hasConceptScore W3145757556C186060115 @default.
- W3145757556 hasConceptScore W3145757556C192562407 @default.
- W3145757556 hasConceptScore W3145757556C33676613 @default.
- W3145757556 hasConceptScore W3145757556C33923547 @default.
- W3145757556 hasConceptScore W3145757556C41008148 @default.
- W3145757556 hasConceptScore W3145757556C49040817 @default.
- W3145757556 hasConceptScore W3145757556C86803240 @default.
- W3145757556 hasFunder F4320320696 @default.
- W3145757556 hasLocation W31457575561 @default.
- W3145757556 hasLocation W31457575562 @default.
- W3145757556 hasOpenAccess W3145757556 @default.
- W3145757556 hasPrimaryLocation W31457575561 @default.
- W3145757556 hasRelatedWork W1968175605 @default.
- W3145757556 hasRelatedWork W2018728584 @default.
- W3145757556 hasRelatedWork W2143618447 @default.