Matches in SemOpenAlex for { <https://semopenalex.org/work/W3145836596> ?p ?o ?g. }
- W3145836596 endingPage "1135" @default.
- W3145836596 startingPage "1109" @default.
- W3145836596 abstract "Thunderstorm frequency (TSF) prediction with higher accuracy is of great significance under climate extremes for reducing potential damages. However, TSF prediction has received little attention because a thunderstorm event is a combination of intricate and unique weather scenarios with high instability, making it difficult to predict. To close this gap, we proposed two novel hybrid machine learning models through hybridization of data pre-processing ensemble empirical mode decomposition (EEMD) with two state-of-arts models, namely artificial neural network (ANN), support vector machine for TSF prediction at three categories over Bangladesh. We have demarcated the yearly TSF datasets into three categories for the period 1981–2016 recorded at 28 sites; high (March–June), moderate (July–October), and low (November–February) TSF months. The performance of the proposed EEMD-ANN and EEMD-SVM hybrid models was compared with classical ANN, SVM, and autoregressive integrated moving average. EEMD-ANN and EEMD-SVM hybrid models showed 8.02–22.48% higher performance precision in terms of root mean square error compared to other models at high-, moderate-, and low-frequency categories. Eleven out of 21 input parameters were selected based on the random forest variable importance analysis. The sensitivity analysis results showed that each input parameter was positively contributed to building the best model of each category, and thunderstorm days are the most contributing parameters influencing TSF prediction. The proposed hybrid models outperformed the conventional models where EEMD-ANN is the most skillful for high TSF prediction, and EEMD-SVM is for moderate and low TSF prediction. The findings indicate the potential of hybridization of EEMD with the conventional models for improving prediction precision. The hybrid models developed in this work can be adopted for TSF prediction in Bangladesh as well as different parts of the world." @default.
- W3145836596 created "2021-04-13" @default.
- W3145836596 creator A5038855458 @default.
- W3145836596 creator A5049903594 @default.
- W3145836596 creator A5061210833 @default.
- W3145836596 creator A5072229669 @default.
- W3145836596 date "2021-04-15" @default.
- W3145836596 modified "2023-09-30" @default.
- W3145836596 title "Development of novel hybrid machine learning models for monthly thunderstorm frequency prediction over Bangladesh" @default.
- W3145836596 cites W1177512619 @default.
- W3145836596 cites W1591439598 @default.
- W3145836596 cites W1844167064 @default.
- W3145836596 cites W1864468960 @default.
- W3145836596 cites W1963567590 @default.
- W3145836596 cites W1967444754 @default.
- W3145836596 cites W1968957721 @default.
- W3145836596 cites W1984261549 @default.
- W3145836596 cites W1985479415 @default.
- W3145836596 cites W1990861090 @default.
- W3145836596 cites W2004367476 @default.
- W3145836596 cites W2006319439 @default.
- W3145836596 cites W2007221293 @default.
- W3145836596 cites W2011879745 @default.
- W3145836596 cites W2017999054 @default.
- W3145836596 cites W2028124403 @default.
- W3145836596 cites W2033185628 @default.
- W3145836596 cites W2033676772 @default.
- W3145836596 cites W2038549914 @default.
- W3145836596 cites W2044781495 @default.
- W3145836596 cites W2046794274 @default.
- W3145836596 cites W2070321567 @default.
- W3145836596 cites W2076485554 @default.
- W3145836596 cites W2082521207 @default.
- W3145836596 cites W2090482429 @default.
- W3145836596 cites W2102400473 @default.
- W3145836596 cites W2120390927 @default.
- W3145836596 cites W2126831543 @default.
- W3145836596 cites W2128344973 @default.
- W3145836596 cites W2141504340 @default.
- W3145836596 cites W2179231244 @default.
- W3145836596 cites W2198869818 @default.
- W3145836596 cites W2289559104 @default.
- W3145836596 cites W2317783876 @default.
- W3145836596 cites W2354504648 @default.
- W3145836596 cites W2436899561 @default.
- W3145836596 cites W2582893899 @default.
- W3145836596 cites W2601923741 @default.
- W3145836596 cites W2733780589 @default.
- W3145836596 cites W2741444182 @default.
- W3145836596 cites W2743153755 @default.
- W3145836596 cites W2765152137 @default.
- W3145836596 cites W2783443666 @default.
- W3145836596 cites W2783510487 @default.
- W3145836596 cites W2790394019 @default.
- W3145836596 cites W2806700095 @default.
- W3145836596 cites W2890250115 @default.
- W3145836596 cites W2901469855 @default.
- W3145836596 cites W2904737795 @default.
- W3145836596 cites W2911964244 @default.
- W3145836596 cites W2914530224 @default.
- W3145836596 cites W2939857830 @default.
- W3145836596 cites W2943973631 @default.
- W3145836596 cites W2955744471 @default.
- W3145836596 cites W2971189780 @default.
- W3145836596 cites W2998389049 @default.
- W3145836596 cites W3000473633 @default.
- W3145836596 cites W3005971186 @default.
- W3145836596 cites W3007278211 @default.
- W3145836596 cites W3007764688 @default.
- W3145836596 cites W3012174961 @default.
- W3145836596 cites W3017220412 @default.
- W3145836596 cites W3022900932 @default.
- W3145836596 cites W3023612471 @default.
- W3145836596 cites W3026349807 @default.
- W3145836596 cites W3038159662 @default.
- W3145836596 cites W3093615704 @default.
- W3145836596 cites W3094397599 @default.
- W3145836596 cites W3095115669 @default.
- W3145836596 cites W3095455382 @default.
- W3145836596 cites W3096798230 @default.
- W3145836596 cites W3122521293 @default.
- W3145836596 cites W3134605838 @default.
- W3145836596 cites W3136240705 @default.
- W3145836596 cites W3141132941 @default.
- W3145836596 cites W4230674625 @default.
- W3145836596 cites W2116932910 @default.
- W3145836596 doi "https://doi.org/10.1007/s11069-021-04722-9" @default.
- W3145836596 hasPublicationYear "2021" @default.
- W3145836596 type Work @default.
- W3145836596 sameAs 3145836596 @default.
- W3145836596 citedByCount "6" @default.
- W3145836596 countsByYear W31458365962021 @default.
- W3145836596 countsByYear W31458365962022 @default.
- W3145836596 countsByYear W31458365962023 @default.
- W3145836596 crossrefType "journal-article" @default.
- W3145836596 hasAuthorship W3145836596A5038855458 @default.
- W3145836596 hasAuthorship W3145836596A5049903594 @default.
- W3145836596 hasAuthorship W3145836596A5061210833 @default.