Matches in SemOpenAlex for { <https://semopenalex.org/work/W3145877980> ?p ?o ?g. }
- W3145877980 endingPage "101195" @default.
- W3145877980 startingPage "101195" @default.
- W3145877980 abstract "The variation of crustal thickness is a critical index to reveal how the continental crust evolved over its four billion years. Generally, ratios of whole-rock trace elements, such as Sr/Y, (La/Yb)n and Ce/Y, are used to characterize crustal thicknesses. However, sometimes confusing results are obtained since there is no enough filtered data. Here, a state-of-the-art approach, based on a machine-learning algorithm, is proposed to predict crustal thickness using global major- and trace-element geochemical data of intermediate arc rocks and intraplate basalts, and their corresponding crustal thicknesses. After the validation processes, the root-mean-square error (RMSE) and the coefficient of determination (R2) score were used to evaluate the performance of the machine learning algorithm based on the learning dataset which has never been used during the training phase. The results demonstrate that the machine learning algorithm is more reliable in predicting crustal thickness than the conventional methods. The trained model predicts that the crustal thickness of the eastern North China Craton (ENCC) was ~45 km from the Late Triassic to the Early Cretaceous, but ~35 km from the Early Cretaceous, which corresponds to the paleo-elevation of 3.0 ± 1.5 km at Early Mesozoic, and decease to the present-day elevation in the ENCC. The estimates are generally consistent with the previous studies on xenoliths from the lower crust and on the paleoenvironment of the coastal mountain of the ENCC, which indicates that the lower crust of the ENCC was delaminated abruptly at the Early Cretaceous." @default.
- W3145877980 created "2021-04-13" @default.
- W3145877980 creator A5011455054 @default.
- W3145877980 creator A5013488863 @default.
- W3145877980 creator A5022290526 @default.
- W3145877980 creator A5034413144 @default.
- W3145877980 creator A5048022538 @default.
- W3145877980 creator A5050422592 @default.
- W3145877980 creator A5063298074 @default.
- W3145877980 creator A5076933533 @default.
- W3145877980 date "2021-09-01" @default.
- W3145877980 modified "2023-10-17" @default.
- W3145877980 title "A machine learning approach to tracking crustal thickness variations in the eastern North China Craton" @default.
- W3145877980 cites W1509769237 @default.
- W3145877980 cites W1538770840 @default.
- W3145877980 cites W1587624588 @default.
- W3145877980 cites W1676610462 @default.
- W3145877980 cites W1974509843 @default.
- W3145877980 cites W1975007971 @default.
- W3145877980 cites W1977431633 @default.
- W3145877980 cites W1982133624 @default.
- W3145877980 cites W1988267480 @default.
- W3145877980 cites W1991712311 @default.
- W3145877980 cites W1994568085 @default.
- W3145877980 cites W2000253240 @default.
- W3145877980 cites W2001280942 @default.
- W3145877980 cites W2017577740 @default.
- W3145877980 cites W2029184354 @default.
- W3145877980 cites W2030870291 @default.
- W3145877980 cites W2043003723 @default.
- W3145877980 cites W2046653975 @default.
- W3145877980 cites W2049907150 @default.
- W3145877980 cites W2056107963 @default.
- W3145877980 cites W2056637161 @default.
- W3145877980 cites W2062089904 @default.
- W3145877980 cites W2062633761 @default.
- W3145877980 cites W2069330001 @default.
- W3145877980 cites W2069647204 @default.
- W3145877980 cites W2071386916 @default.
- W3145877980 cites W2075199408 @default.
- W3145877980 cites W2077085454 @default.
- W3145877980 cites W2080536253 @default.
- W3145877980 cites W2082926392 @default.
- W3145877980 cites W2083795015 @default.
- W3145877980 cites W2098150726 @default.
- W3145877980 cites W2102704186 @default.
- W3145877980 cites W2138522501 @default.
- W3145877980 cites W2161466829 @default.
- W3145877980 cites W2162900173 @default.
- W3145877980 cites W2163100615 @default.
- W3145877980 cites W2164911500 @default.
- W3145877980 cites W2167856052 @default.
- W3145877980 cites W2169278971 @default.
- W3145877980 cites W2169362575 @default.
- W3145877980 cites W2218047931 @default.
- W3145877980 cites W2274475702 @default.
- W3145877980 cites W2531174536 @default.
- W3145877980 cites W2564695062 @default.
- W3145877980 cites W2575727525 @default.
- W3145877980 cites W2784018508 @default.
- W3145877980 cites W2790497323 @default.
- W3145877980 cites W2900337059 @default.
- W3145877980 cites W2904770354 @default.
- W3145877980 cites W2950034011 @default.
- W3145877980 cites W2981900902 @default.
- W3145877980 cites W2991400973 @default.
- W3145877980 cites W2994752451 @default.
- W3145877980 cites W3043310356 @default.
- W3145877980 cites W3083140005 @default.
- W3145877980 cites W3098040851 @default.
- W3145877980 cites W3100960090 @default.
- W3145877980 cites W3102476541 @default.
- W3145877980 cites W3207805732 @default.
- W3145877980 cites W51853777 @default.
- W3145877980 doi "https://doi.org/10.1016/j.gsf.2021.101195" @default.
- W3145877980 hasPublicationYear "2021" @default.
- W3145877980 type Work @default.
- W3145877980 sameAs 3145877980 @default.
- W3145877980 citedByCount "5" @default.
- W3145877980 countsByYear W31458779802022 @default.
- W3145877980 countsByYear W31458779802023 @default.
- W3145877980 crossrefType "journal-article" @default.
- W3145877980 hasAuthorship W3145877980A5011455054 @default.
- W3145877980 hasAuthorship W3145877980A5013488863 @default.
- W3145877980 hasAuthorship W3145877980A5022290526 @default.
- W3145877980 hasAuthorship W3145877980A5034413144 @default.
- W3145877980 hasAuthorship W3145877980A5048022538 @default.
- W3145877980 hasAuthorship W3145877980A5050422592 @default.
- W3145877980 hasAuthorship W3145877980A5063298074 @default.
- W3145877980 hasAuthorship W3145877980A5076933533 @default.
- W3145877980 hasBestOaLocation W31458779801 @default.
- W3145877980 hasConcept C12294951 @default.
- W3145877980 hasConcept C127313418 @default.
- W3145877980 hasConcept C141646446 @default.
- W3145877980 hasConcept C147717901 @default.
- W3145877980 hasConcept C151730666 @default.
- W3145877980 hasConcept C154200439 @default.
- W3145877980 hasConcept C165205528 @default.