Matches in SemOpenAlex for { <https://semopenalex.org/work/W3146027918> ?p ?o ?g. }
- W3146027918 abstract "Multiscale computational modelling is challenging due to the high computational cost of direct numerical simulation by finite elements. To address this issue, concurrent multiscale methods use the solution of cheaper macroscale surrogates as boundary conditions to microscale sliding windows. The microscale problems remain a numerically challenging operation both in terms of implementation and cost. In this work we propose to replace the local microscale solution by an Encoder-Decoder Convolutional Neural Network that will generate fine-scale stress corrections to coarse predictions around unresolved microscale features, without prior parametrisation of local microscale problems. We deploy a Bayesian approach providing credible intervals to evaluate the uncertainty of the predictions, which is then used to investigate the merits of a selective learning framework. We will demonstrate the capability of the approach to predict equivalent stress fields in porous structures using linearised and finite strain elasticity theories." @default.
- W3146027918 created "2021-04-13" @default.
- W3146027918 creator A5014555327 @default.
- W3146027918 creator A5025898001 @default.
- W3146027918 creator A5027163198 @default.
- W3146027918 creator A5046230008 @default.
- W3146027918 creator A5051937164 @default.
- W3146027918 date "2020-12-17" @default.
- W3146027918 modified "2023-09-25" @default.
- W3146027918 title "A Bayesian multiscale CNN framework to predict local stress fields in structures with microscale features" @default.
- W3146027918 cites W1510052597 @default.
- W3146027918 cites W1538934584 @default.
- W3146027918 cites W1554663460 @default.
- W3146027918 cites W1959608418 @default.
- W3146027918 cites W2020369620 @default.
- W3146027918 cites W2047229728 @default.
- W3146027918 cites W2047591100 @default.
- W3146027918 cites W2056328108 @default.
- W3146027918 cites W2058910428 @default.
- W3146027918 cites W2067511555 @default.
- W3146027918 cites W2108677974 @default.
- W3146027918 cites W2194775991 @default.
- W3146027918 cites W2290952491 @default.
- W3146027918 cites W2322516085 @default.
- W3146027918 cites W2338304894 @default.
- W3146027918 cites W2537600698 @default.
- W3146027918 cites W2597787948 @default.
- W3146027918 cites W2735270253 @default.
- W3146027918 cites W2785071288 @default.
- W3146027918 cites W2884068670 @default.
- W3146027918 cites W2898870584 @default.
- W3146027918 cites W2903600131 @default.
- W3146027918 cites W2949117887 @default.
- W3146027918 cites W2951266961 @default.
- W3146027918 cites W2962734576 @default.
- W3146027918 cites W2963372104 @default.
- W3146027918 cites W2963420686 @default.
- W3146027918 cites W2963966343 @default.
- W3146027918 cites W2964059111 @default.
- W3146027918 cites W2977796156 @default.
- W3146027918 cites W3036063661 @default.
- W3146027918 cites W3042343566 @default.
- W3146027918 cites W3093605970 @default.
- W3146027918 cites W3115358268 @default.
- W3146027918 cites W3127451557 @default.
- W3146027918 cites W3168386838 @default.
- W3146027918 cites W9559838 @default.
- W3146027918 cites W1525783482 @default.
- W3146027918 hasPublicationYear "2020" @default.
- W3146027918 type Work @default.
- W3146027918 sameAs 3146027918 @default.
- W3146027918 citedByCount "0" @default.
- W3146027918 crossrefType "posted-content" @default.
- W3146027918 hasAuthorship W3146027918A5014555327 @default.
- W3146027918 hasAuthorship W3146027918A5025898001 @default.
- W3146027918 hasAuthorship W3146027918A5027163198 @default.
- W3146027918 hasAuthorship W3146027918A5046230008 @default.
- W3146027918 hasAuthorship W3146027918A5051937164 @default.
- W3146027918 hasConcept C11413529 @default.
- W3146027918 hasConcept C127413603 @default.
- W3146027918 hasConcept C135628077 @default.
- W3146027918 hasConcept C145420912 @default.
- W3146027918 hasConcept C154945302 @default.
- W3146027918 hasConcept C179428855 @default.
- W3146027918 hasConcept C33923547 @default.
- W3146027918 hasConcept C41008148 @default.
- W3146027918 hasConcept C66938386 @default.
- W3146027918 hasConcept C81363708 @default.
- W3146027918 hasConceptScore W3146027918C11413529 @default.
- W3146027918 hasConceptScore W3146027918C127413603 @default.
- W3146027918 hasConceptScore W3146027918C135628077 @default.
- W3146027918 hasConceptScore W3146027918C145420912 @default.
- W3146027918 hasConceptScore W3146027918C154945302 @default.
- W3146027918 hasConceptScore W3146027918C179428855 @default.
- W3146027918 hasConceptScore W3146027918C33923547 @default.
- W3146027918 hasConceptScore W3146027918C41008148 @default.
- W3146027918 hasConceptScore W3146027918C66938386 @default.
- W3146027918 hasConceptScore W3146027918C81363708 @default.
- W3146027918 hasLocation W31460279181 @default.
- W3146027918 hasOpenAccess W3146027918 @default.
- W3146027918 hasPrimaryLocation W31460279181 @default.
- W3146027918 hasRelatedWork W174571628 @default.
- W3146027918 hasRelatedWork W1978574671 @default.
- W3146027918 hasRelatedWork W2009010368 @default.
- W3146027918 hasRelatedWork W2011674305 @default.
- W3146027918 hasRelatedWork W2021336414 @default.
- W3146027918 hasRelatedWork W2022757985 @default.
- W3146027918 hasRelatedWork W2031288167 @default.
- W3146027918 hasRelatedWork W2061333371 @default.
- W3146027918 hasRelatedWork W2101222840 @default.
- W3146027918 hasRelatedWork W2178888172 @default.
- W3146027918 hasRelatedWork W2565686649 @default.
- W3146027918 hasRelatedWork W2587711154 @default.
- W3146027918 hasRelatedWork W2733922041 @default.
- W3146027918 hasRelatedWork W277536538 @default.
- W3146027918 hasRelatedWork W2889140773 @default.
- W3146027918 hasRelatedWork W2901042958 @default.
- W3146027918 hasRelatedWork W2915196518 @default.
- W3146027918 hasRelatedWork W3017435668 @default.
- W3146027918 hasRelatedWork W3127302240 @default.