Matches in SemOpenAlex for { <https://semopenalex.org/work/W3146049777> ?p ?o ?g. }
- W3146049777 endingPage "112408" @default.
- W3146049777 startingPage "112408" @default.
- W3146049777 abstract "As the world's leading corn producer, the United States supplies more than 30% of the global corn production. Accurate and timely estimation of corn yield is therefore essential for commodity trading and global food security. Recently, several deep learning models have been explored for corn yield forecasting. Despite success, most existing models only provide yield estimations without quantifying the uncertainty associated with the predictions. Also, the traditional deep learning approaches typically require a large training set and are easily prone to overfitting when the number of samples in the training set is relatively small. To address these limitations, in this study, we developed a county-level corn yield prediction model based on Bayesian Neural Network (BNN) using multiple data sources that are publicly available, including time-series satellite products, sequential climate observations, soil property maps, and historical corn yield records. Using preceding years since 2001 for model training, the developed BNN model achieved an average coefficient of determination (R2) of 0.77 for late-season prediction across the U.S. Corn Belt in testing years 2010–2019, and outperformed five other state-of-the-art machine learning models. Detailed evaluation in three representative testing years demonstrated that the proposed BNN model could accurately estimate corn yield not only in normal years but also in abnormal years when extreme weather events happened. Moreover, the timeliness of the prediction was evaluated within the growing season with an R2~0.75 achieved by middle August, which is about 2 months before the harvest. We also assessed the predictive uncertainty, and more than 84% of the observed yield records were successfully enveloped in the 95% confidence interval of the predictive yield distribution. Our results also showed that the uncertainty level decreased steadily as time proceeded and stabilized around early August. Uncertainties in yield prediction were mainly induced by the observation noise and also related to the interannual and seasonal variabilities of environmental stress such as heat and water stress. This paper provides a robust framework for the within-season prediction of crop yield and highlights the need to obtain a deeper understanding of the effects of environmental stress on agricultural productivity and crop yield estimation." @default.
- W3146049777 created "2021-04-13" @default.
- W3146049777 creator A5015243676 @default.
- W3146049777 creator A5016906302 @default.
- W3146049777 creator A5049407947 @default.
- W3146049777 creator A5074817070 @default.
- W3146049777 date "2021-06-01" @default.
- W3146049777 modified "2023-10-17" @default.
- W3146049777 title "Corn yield prediction and uncertainty analysis based on remotely sensed variables using a Bayesian neural network approach" @default.
- W3146049777 cites W1685317713 @default.
- W3146049777 cites W1966334841 @default.
- W3146049777 cites W1978617972 @default.
- W3146049777 cites W1979583486 @default.
- W3146049777 cites W1986072339 @default.
- W3146049777 cites W1987150254 @default.
- W3146049777 cites W1987415163 @default.
- W3146049777 cites W2004663923 @default.
- W3146049777 cites W2005624702 @default.
- W3146049777 cites W2015037454 @default.
- W3146049777 cites W2018636561 @default.
- W3146049777 cites W2023044705 @default.
- W3146049777 cites W2042692910 @default.
- W3146049777 cites W2043153600 @default.
- W3146049777 cites W2047585741 @default.
- W3146049777 cites W2064675550 @default.
- W3146049777 cites W2068914580 @default.
- W3146049777 cites W2071110539 @default.
- W3146049777 cites W2086909858 @default.
- W3146049777 cites W2090799511 @default.
- W3146049777 cites W2094677081 @default.
- W3146049777 cites W2109006150 @default.
- W3146049777 cites W2113410727 @default.
- W3146049777 cites W2119132330 @default.
- W3146049777 cites W2122430292 @default.
- W3146049777 cites W2159292710 @default.
- W3146049777 cites W2519965043 @default.
- W3146049777 cites W2725897987 @default.
- W3146049777 cites W2742109465 @default.
- W3146049777 cites W2790979755 @default.
- W3146049777 cites W2885311758 @default.
- W3146049777 cites W2891765392 @default.
- W3146049777 cites W2898671507 @default.
- W3146049777 cites W2911964244 @default.
- W3146049777 cites W2919115771 @default.
- W3146049777 cites W2942591112 @default.
- W3146049777 cites W2943654052 @default.
- W3146049777 cites W2959933879 @default.
- W3146049777 cites W2964060211 @default.
- W3146049777 cites W2969017260 @default.
- W3146049777 cites W2995678734 @default.
- W3146049777 cites W2996041315 @default.
- W3146049777 cites W3000098473 @default.
- W3146049777 cites W3000336815 @default.
- W3146049777 cites W3008439211 @default.
- W3146049777 cites W3011178959 @default.
- W3146049777 cites W3015527879 @default.
- W3146049777 cites W3035012873 @default.
- W3146049777 cites W3103444592 @default.
- W3146049777 doi "https://doi.org/10.1016/j.rse.2021.112408" @default.
- W3146049777 hasPublicationYear "2021" @default.
- W3146049777 type Work @default.
- W3146049777 sameAs 3146049777 @default.
- W3146049777 citedByCount "70" @default.
- W3146049777 countsByYear W31460497772021 @default.
- W3146049777 countsByYear W31460497772022 @default.
- W3146049777 countsByYear W31460497772023 @default.
- W3146049777 crossrefType "journal-article" @default.
- W3146049777 hasAuthorship W3146049777A5015243676 @default.
- W3146049777 hasAuthorship W3146049777A5016906302 @default.
- W3146049777 hasAuthorship W3146049777A5049407947 @default.
- W3146049777 hasAuthorship W3146049777A5074817070 @default.
- W3146049777 hasBestOaLocation W31460497771 @default.
- W3146049777 hasConcept C105795698 @default.
- W3146049777 hasConcept C107673813 @default.
- W3146049777 hasConcept C108583219 @default.
- W3146049777 hasConcept C119857082 @default.
- W3146049777 hasConcept C126343540 @default.
- W3146049777 hasConcept C134121241 @default.
- W3146049777 hasConcept C154945302 @default.
- W3146049777 hasConcept C191897082 @default.
- W3146049777 hasConcept C192562407 @default.
- W3146049777 hasConcept C22019652 @default.
- W3146049777 hasConcept C33923547 @default.
- W3146049777 hasConcept C39432304 @default.
- W3146049777 hasConcept C41008148 @default.
- W3146049777 hasConcept C50644808 @default.
- W3146049777 hasConcept C6557445 @default.
- W3146049777 hasConcept C86803240 @default.
- W3146049777 hasConceptScore W3146049777C105795698 @default.
- W3146049777 hasConceptScore W3146049777C107673813 @default.
- W3146049777 hasConceptScore W3146049777C108583219 @default.
- W3146049777 hasConceptScore W3146049777C119857082 @default.
- W3146049777 hasConceptScore W3146049777C126343540 @default.
- W3146049777 hasConceptScore W3146049777C134121241 @default.
- W3146049777 hasConceptScore W3146049777C154945302 @default.
- W3146049777 hasConceptScore W3146049777C191897082 @default.
- W3146049777 hasConceptScore W3146049777C192562407 @default.
- W3146049777 hasConceptScore W3146049777C22019652 @default.