Matches in SemOpenAlex for { <https://semopenalex.org/work/W3146051161> ?p ?o ?g. }
- W3146051161 abstract "Single hot-wire velocity measurements have been conducted along a three-dimensional measurement grid to capture the flow-field induced by a 45 $$^circ$$ inclined slotted pulsed jet. Based on the periodic behavior of the flow, two different estimation methods have been implemented. The first one, considered as the reference baseline, is the conditional approach which consists in the redistribution of the experimental data into space- and time-resolved three-dimensional velocity fields. The second one uses a neural network to estimate 3D velocity fields given spatial coordinates and time. This paper compares the two methods for a complete flow-field estimation based on hot-wire measurements. Results suggest that the neural network is tailored to capture the phase-averaged dynamic response of the jet induced by the actuator, and identify the coherent structures in the flow field. Interesting performances are also observed when degrading the learning database, meaning that neural networks can be used to drastically improve the temporal or spatial resolution of a flow field estimation compared to the experimental data resolution." @default.
- W3146051161 created "2021-04-13" @default.
- W3146051161 creator A5005888664 @default.
- W3146051161 creator A5017032608 @default.
- W3146051161 creator A5023927438 @default.
- W3146051161 creator A5032563925 @default.
- W3146051161 creator A5041044595 @default.
- W3146051161 creator A5089069028 @default.
- W3146051161 creator A5090680204 @default.
- W3146051161 date "2021-03-31" @default.
- W3146051161 modified "2023-09-25" @default.
- W3146051161 title "Pulsed jet phase-averaged flow field estimation based on neural network approach" @default.
- W3146051161 cites W1599943566 @default.
- W3146051161 cites W1963558316 @default.
- W3146051161 cites W1966980602 @default.
- W3146051161 cites W1973326442 @default.
- W3146051161 cites W1979447518 @default.
- W3146051161 cites W1979796317 @default.
- W3146051161 cites W1988115241 @default.
- W3146051161 cites W1997126009 @default.
- W3146051161 cites W2001771035 @default.
- W3146051161 cites W2004185243 @default.
- W3146051161 cites W2009190085 @default.
- W3146051161 cites W2018706686 @default.
- W3146051161 cites W2021482846 @default.
- W3146051161 cites W2024018027 @default.
- W3146051161 cites W2047950390 @default.
- W3146051161 cites W2056853307 @default.
- W3146051161 cites W2076682561 @default.
- W3146051161 cites W2095781769 @default.
- W3146051161 cites W2097795735 @default.
- W3146051161 cites W2101792102 @default.
- W3146051161 cites W2112928589 @default.
- W3146051161 cites W2137678215 @default.
- W3146051161 cites W2163711796 @default.
- W3146051161 cites W2334496948 @default.
- W3146051161 cites W2494848619 @default.
- W3146051161 cites W2518384347 @default.
- W3146051161 cites W2548869838 @default.
- W3146051161 cites W2605182067 @default.
- W3146051161 cites W2759844026 @default.
- W3146051161 cites W2766518795 @default.
- W3146051161 cites W2801938748 @default.
- W3146051161 cites W2808330913 @default.
- W3146051161 cites W2892183203 @default.
- W3146051161 cites W2899283552 @default.
- W3146051161 cites W2916798096 @default.
- W3146051161 cites W2923473344 @default.
- W3146051161 cites W2948230027 @default.
- W3146051161 cites W2950109098 @default.
- W3146051161 cites W2955574136 @default.
- W3146051161 cites W3015823212 @default.
- W3146051161 cites W3016221005 @default.
- W3146051161 cites W3034752634 @default.
- W3146051161 cites W3100345157 @default.
- W3146051161 cites W3100989476 @default.
- W3146051161 cites W3105339588 @default.
- W3146051161 doi "https://doi.org/10.1007/s00348-021-03180-0" @default.
- W3146051161 hasPublicationYear "2021" @default.
- W3146051161 type Work @default.
- W3146051161 sameAs 3146051161 @default.
- W3146051161 citedByCount "4" @default.
- W3146051161 countsByYear W31460511612021 @default.
- W3146051161 countsByYear W31460511612023 @default.
- W3146051161 crossrefType "journal-article" @default.
- W3146051161 hasAuthorship W3146051161A5005888664 @default.
- W3146051161 hasAuthorship W3146051161A5017032608 @default.
- W3146051161 hasAuthorship W3146051161A5023927438 @default.
- W3146051161 hasAuthorship W3146051161A5032563925 @default.
- W3146051161 hasAuthorship W3146051161A5041044595 @default.
- W3146051161 hasAuthorship W3146051161A5089069028 @default.
- W3146051161 hasAuthorship W3146051161A5090680204 @default.
- W3146051161 hasBestOaLocation W31460511612 @default.
- W3146051161 hasConcept C11413529 @default.
- W3146051161 hasConcept C119666444 @default.
- W3146051161 hasConcept C119947313 @default.
- W3146051161 hasConcept C120665830 @default.
- W3146051161 hasConcept C121332964 @default.
- W3146051161 hasConcept C154945302 @default.
- W3146051161 hasConcept C202444582 @default.
- W3146051161 hasConcept C33923547 @default.
- W3146051161 hasConcept C38349280 @default.
- W3146051161 hasConcept C41008148 @default.
- W3146051161 hasConcept C50644808 @default.
- W3146051161 hasConcept C57879066 @default.
- W3146051161 hasConcept C91188154 @default.
- W3146051161 hasConcept C9652623 @default.
- W3146051161 hasConceptScore W3146051161C11413529 @default.
- W3146051161 hasConceptScore W3146051161C119666444 @default.
- W3146051161 hasConceptScore W3146051161C119947313 @default.
- W3146051161 hasConceptScore W3146051161C120665830 @default.
- W3146051161 hasConceptScore W3146051161C121332964 @default.
- W3146051161 hasConceptScore W3146051161C154945302 @default.
- W3146051161 hasConceptScore W3146051161C202444582 @default.
- W3146051161 hasConceptScore W3146051161C33923547 @default.
- W3146051161 hasConceptScore W3146051161C38349280 @default.
- W3146051161 hasConceptScore W3146051161C41008148 @default.
- W3146051161 hasConceptScore W3146051161C50644808 @default.
- W3146051161 hasConceptScore W3146051161C57879066 @default.
- W3146051161 hasConceptScore W3146051161C91188154 @default.