Matches in SemOpenAlex for { <https://semopenalex.org/work/W3146063182> ?p ?o ?g. }
- W3146063182 abstract "Abstract Protein 3D structure prediction has advanced significantly in recent years due to improving contact prediction accuracy. This improvement has been largely due to deep learning approaches that predict inter-residue contacts and, more recently, distances using multiple sequence alignments (MSAs). In this work we present AttentiveDist, a novel approach that uses different MSAs generated with different E-values in a single model to increase the co-evolutionary information provided to the model. To determine the importance of each MSA’s feature at the inter-residue level, we added an attention layer to the deep neural network. We show that combining four MSAs of different E-value cutoffs improved the model prediction performance as compared to single E-value MSA features. A further improvement was observed when an attention layer was used and even more when additional prediction tasks of bond angle predictions were added. The improvement of distance predictions were successfully transferred to achieve better protein tertiary structure modeling." @default.
- W3146063182 created "2021-04-13" @default.
- W3146063182 creator A5008917271 @default.
- W3146063182 creator A5041487959 @default.
- W3146063182 creator A5062293219 @default.
- W3146063182 creator A5064708063 @default.
- W3146063182 creator A5067994741 @default.
- W3146063182 creator A5078844851 @default.
- W3146063182 date "2021-04-07" @default.
- W3146063182 modified "2023-09-26" @default.
- W3146063182 title "Analyzing effect of quadruple multiple sequence alignments on deep learning based protein inter-residue distance prediction" @default.
- W3146063182 cites W1902237438 @default.
- W3146063182 cites W2007933226 @default.
- W3146063182 cites W2008545402 @default.
- W3146063182 cites W2051210555 @default.
- W3146063182 cites W2051872583 @default.
- W3146063182 cites W2061042699 @default.
- W3146063182 cites W2100320834 @default.
- W3146063182 cites W2102461176 @default.
- W3146063182 cites W2107867854 @default.
- W3146063182 cites W2109610280 @default.
- W3146063182 cites W2113267464 @default.
- W3146063182 cites W2114340287 @default.
- W3146063182 cites W2125677968 @default.
- W3146063182 cites W2137566700 @default.
- W3146063182 cites W2140574901 @default.
- W3146063182 cites W2151581834 @default.
- W3146063182 cites W2158714788 @default.
- W3146063182 cites W2166701319 @default.
- W3146063182 cites W2169562071 @default.
- W3146063182 cites W2194775991 @default.
- W3146063182 cites W2336829316 @default.
- W3146063182 cites W2518269878 @default.
- W3146063182 cites W2557595285 @default.
- W3146063182 cites W2778001245 @default.
- W3146063182 cites W2808950571 @default.
- W3146063182 cites W2905446269 @default.
- W3146063182 cites W2918063357 @default.
- W3146063182 cites W2953008890 @default.
- W3146063182 cites W2962831078 @default.
- W3146063182 cites W2967606876 @default.
- W3146063182 cites W2968295962 @default.
- W3146063182 cites W2968494487 @default.
- W3146063182 cites W2971003495 @default.
- W3146063182 cites W2972411752 @default.
- W3146063182 cites W2982719243 @default.
- W3146063182 cites W2987090428 @default.
- W3146063182 cites W2997234557 @default.
- W3146063182 cites W2999044305 @default.
- W3146063182 cites W3091918580 @default.
- W3146063182 doi "https://doi.org/10.1038/s41598-021-87204-z" @default.
- W3146063182 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8027171" @default.
- W3146063182 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33828153" @default.
- W3146063182 hasPublicationYear "2021" @default.
- W3146063182 type Work @default.
- W3146063182 sameAs 3146063182 @default.
- W3146063182 citedByCount "17" @default.
- W3146063182 countsByYear W31460631822021 @default.
- W3146063182 countsByYear W31460631822022 @default.
- W3146063182 countsByYear W31460631822023 @default.
- W3146063182 crossrefType "journal-article" @default.
- W3146063182 hasAuthorship W3146063182A5008917271 @default.
- W3146063182 hasAuthorship W3146063182A5041487959 @default.
- W3146063182 hasAuthorship W3146063182A5062293219 @default.
- W3146063182 hasAuthorship W3146063182A5064708063 @default.
- W3146063182 hasAuthorship W3146063182A5067994741 @default.
- W3146063182 hasAuthorship W3146063182A5078844851 @default.
- W3146063182 hasBestOaLocation W31460631821 @default.
- W3146063182 hasConcept C104317684 @default.
- W3146063182 hasConcept C108583219 @default.
- W3146063182 hasConcept C119857082 @default.
- W3146063182 hasConcept C124101348 @default.
- W3146063182 hasConcept C153180895 @default.
- W3146063182 hasConcept C154945302 @default.
- W3146063182 hasConcept C167625842 @default.
- W3146063182 hasConcept C18051474 @default.
- W3146063182 hasConcept C2778112365 @default.
- W3146063182 hasConcept C2984842247 @default.
- W3146063182 hasConcept C41008148 @default.
- W3146063182 hasConcept C45484198 @default.
- W3146063182 hasConcept C47701112 @default.
- W3146063182 hasConcept C50644808 @default.
- W3146063182 hasConcept C54355233 @default.
- W3146063182 hasConcept C55493867 @default.
- W3146063182 hasConcept C86803240 @default.
- W3146063182 hasConcept C88031987 @default.
- W3146063182 hasConceptScore W3146063182C104317684 @default.
- W3146063182 hasConceptScore W3146063182C108583219 @default.
- W3146063182 hasConceptScore W3146063182C119857082 @default.
- W3146063182 hasConceptScore W3146063182C124101348 @default.
- W3146063182 hasConceptScore W3146063182C153180895 @default.
- W3146063182 hasConceptScore W3146063182C154945302 @default.
- W3146063182 hasConceptScore W3146063182C167625842 @default.
- W3146063182 hasConceptScore W3146063182C18051474 @default.
- W3146063182 hasConceptScore W3146063182C2778112365 @default.
- W3146063182 hasConceptScore W3146063182C2984842247 @default.
- W3146063182 hasConceptScore W3146063182C41008148 @default.
- W3146063182 hasConceptScore W3146063182C45484198 @default.
- W3146063182 hasConceptScore W3146063182C47701112 @default.
- W3146063182 hasConceptScore W3146063182C50644808 @default.