Matches in SemOpenAlex for { <https://semopenalex.org/work/W3146467503> ?p ?o ?g. }
- W3146467503 endingPage "1313" @default.
- W3146467503 startingPage "1301" @default.
- W3146467503 abstract "Accurately predicting the binding affinities of large sets of protein-ligand complexes efficiently is a key challenge in computational biomolecular science, with applications in drug discovery, chemical biology, and structural biology. Since a scoring function (SF) is used to score, rank, and identify drug leads, the fidelity with which it predicts the affinity of a ligand candidate for a protein's binding site has a significant bearing on the accuracy of virtual screening. Despite intense efforts in developing conventional SFs, which are either force-field based, knowledge-based, or empirical, their limited ranking accuracy has been a major roadblock toward cost-effective drug discovery. Therefore, in this work, we explore a range of novel SFs employing different machine-learning (ML) approaches in conjunction with a variety of physicochemical and geometrical features characterizing protein-ligand complexes. We assess the ranking accuracies of these new ML-based SFs as well as those of conventional SFs in the context of the 2007 and 2010 PDBbind benchmark data sets on both diverse and protein-family-specific test sets. We also investigate the influence of the size of the training data set and the type and number of features used on ranking accuracy. Within clusters of protein-ligand complexes with different ligands bound to the same target protein, we find that the best ML-based SF is able to rank the ligands correctly based on their experimentally determined binding affinities 62.5 percent of the time and identify the top binding ligand 78.1 percent of the time. For this SF, the Spearman correlation coefficient between ranks of ligands ordered by predicted and experimentally determined binding affinities is 0.771. Given the challenging nature of the ranking problem and that SFs are used to screen millions of ligands, this represents a significant improvement over the best conventional SF we studied, for which the corresponding ranking performance values are 57.8 percent, 73.4 percent, and 0.677." @default.
- W3146467503 created "2021-04-13" @default.
- W3146467503 creator A5007704374 @default.
- W3146467503 creator A5073880965 @default.
- W3146467503 date "2012-09-01" @default.
- W3146467503 modified "2023-10-03" @default.
- W3146467503 title "A Comparative Assessment of Ranking Accuracies of Conventional and Machine-Learning-Based Scoring Functions for Protein-Ligand Binding Affinity Prediction" @default.
- W3146467503 cites W1480376833 @default.
- W3146467503 cites W1605578858 @default.
- W3146467503 cites W1656114533 @default.
- W3146467503 cites W1968682237 @default.
- W3146467503 cites W1977467384 @default.
- W3146467503 cites W1984021058 @default.
- W3146467503 cites W1985588649 @default.
- W3146467503 cites W1988111902 @default.
- W3146467503 cites W1993403967 @default.
- W3146467503 cites W2012084558 @default.
- W3146467503 cites W2019610534 @default.
- W3146467503 cites W2032842297 @default.
- W3146467503 cites W2047509756 @default.
- W3146467503 cites W2048207135 @default.
- W3146467503 cites W2050456292 @default.
- W3146467503 cites W2092285329 @default.
- W3146467503 cites W2097612485 @default.
- W3146467503 cites W2098469044 @default.
- W3146467503 cites W2117862793 @default.
- W3146467503 cites W2118587156 @default.
- W3146467503 cites W2128332459 @default.
- W3146467503 cites W2130479394 @default.
- W3146467503 cites W2135472700 @default.
- W3146467503 cites W2135695572 @default.
- W3146467503 cites W2148512505 @default.
- W3146467503 cites W2158360182 @default.
- W3146467503 cites W2160916136 @default.
- W3146467503 cites W2171405825 @default.
- W3146467503 cites W2911964244 @default.
- W3146467503 cites W4247163697 @default.
- W3146467503 cites W4248328359 @default.
- W3146467503 doi "https://doi.org/10.1109/tcbb.2012.36" @default.
- W3146467503 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22411892" @default.
- W3146467503 hasPublicationYear "2012" @default.
- W3146467503 type Work @default.
- W3146467503 sameAs 3146467503 @default.
- W3146467503 citedByCount "39" @default.
- W3146467503 countsByYear W31464675032013 @default.
- W3146467503 countsByYear W31464675032014 @default.
- W3146467503 countsByYear W31464675032015 @default.
- W3146467503 countsByYear W31464675032017 @default.
- W3146467503 countsByYear W31464675032018 @default.
- W3146467503 countsByYear W31464675032019 @default.
- W3146467503 countsByYear W31464675032020 @default.
- W3146467503 countsByYear W31464675032021 @default.
- W3146467503 countsByYear W31464675032022 @default.
- W3146467503 countsByYear W31464675032023 @default.
- W3146467503 crossrefType "journal-article" @default.
- W3146467503 hasAuthorship W3146467503A5007704374 @default.
- W3146467503 hasAuthorship W3146467503A5073880965 @default.
- W3146467503 hasConcept C103697762 @default.
- W3146467503 hasConcept C109095088 @default.
- W3146467503 hasConcept C114614502 @default.
- W3146467503 hasConcept C116569031 @default.
- W3146467503 hasConcept C119857082 @default.
- W3146467503 hasConcept C13280743 @default.
- W3146467503 hasConcept C14036430 @default.
- W3146467503 hasConcept C151730666 @default.
- W3146467503 hasConcept C154945302 @default.
- W3146467503 hasConcept C164226766 @default.
- W3146467503 hasConcept C170493617 @default.
- W3146467503 hasConcept C177264268 @default.
- W3146467503 hasConcept C185592680 @default.
- W3146467503 hasConcept C185798385 @default.
- W3146467503 hasConcept C189430467 @default.
- W3146467503 hasConcept C199360897 @default.
- W3146467503 hasConcept C205649164 @default.
- W3146467503 hasConcept C2779343474 @default.
- W3146467503 hasConcept C2780283098 @default.
- W3146467503 hasConcept C3018795828 @default.
- W3146467503 hasConcept C33923547 @default.
- W3146467503 hasConcept C41008148 @default.
- W3146467503 hasConcept C54355233 @default.
- W3146467503 hasConcept C55493867 @default.
- W3146467503 hasConcept C60644358 @default.
- W3146467503 hasConcept C70721500 @default.
- W3146467503 hasConcept C71240020 @default.
- W3146467503 hasConcept C74187038 @default.
- W3146467503 hasConcept C86037889 @default.
- W3146467503 hasConcept C86803240 @default.
- W3146467503 hasConceptScore W3146467503C103697762 @default.
- W3146467503 hasConceptScore W3146467503C109095088 @default.
- W3146467503 hasConceptScore W3146467503C114614502 @default.
- W3146467503 hasConceptScore W3146467503C116569031 @default.
- W3146467503 hasConceptScore W3146467503C119857082 @default.
- W3146467503 hasConceptScore W3146467503C13280743 @default.
- W3146467503 hasConceptScore W3146467503C14036430 @default.
- W3146467503 hasConceptScore W3146467503C151730666 @default.
- W3146467503 hasConceptScore W3146467503C154945302 @default.
- W3146467503 hasConceptScore W3146467503C164226766 @default.
- W3146467503 hasConceptScore W3146467503C170493617 @default.