Matches in SemOpenAlex for { <https://semopenalex.org/work/W3146685237> ?p ?o ?g. }
- W3146685237 abstract "Many cognitive neuroscience studies use large feature sets to predict and interpret brain activity patterns. Feature sets take many forms, from human stimulus annotations to representations in deep neural networks. Of crucial importance in all these studies is the mapping model, which defines the space of possible relationships between features and neural data. Until recently, most encoding and decoding studies have used linear mapping models. Increasing availability of large datasets and computing resources has recently allowed some researchers to employ more flexible nonlinear mapping models instead; however, the question of whether nonlinear mapping models can yield meaningful scientific insights remains debated. Here, we discuss the choice of a mapping model in the context of three overarching desiderata: predictive accuracy, interpretability, and biological plausibility. We show that, contrary to popular intuition, these desiderata do not map cleanly onto the linear/nonlinear divide; instead, each desideratum can refer to multiple research goals, each of which imposes its own constraints on the mapping model. Moreover, we argue that, instead of categorically treating the mapping models as linear or nonlinear, we should instead aim to estimate the complexity of these models. We show that, in many cases, complexity provides a more accurate reflection of restrictions imposed by various research goals. Finally, we outline several complexity metrics that can be used to effectively evaluate mapping models." @default.
- W3146685237 created "2021-04-13" @default.
- W3146685237 creator A5010422118 @default.
- W3146685237 creator A5034283312 @default.
- W3146685237 creator A5074159044 @default.
- W3146685237 creator A5079424258 @default.
- W3146685237 creator A5081808595 @default.
- W3146685237 creator A5082150709 @default.
- W3146685237 date "2021-04-04" @default.
- W3146685237 modified "2023-10-11" @default.
- W3146685237 title "Beyond linear regression: mapping models in cognitive neuroscience should align with research goals" @default.
- W3146685237 cites W1457602677 @default.
- W3146685237 cites W1520252399 @default.
- W3146685237 cites W1526492552 @default.
- W3146685237 cites W1551759367 @default.
- W3146685237 cites W1965333043 @default.
- W3146685237 cites W1980592753 @default.
- W3146685237 cites W2007226897 @default.
- W3146685237 cites W2011402106 @default.
- W3146685237 cites W2012027725 @default.
- W3146685237 cites W2036084760 @default.
- W3146685237 cites W2044685455 @default.
- W3146685237 cites W2054658115 @default.
- W3146685237 cites W2058616551 @default.
- W3146685237 cites W2058670155 @default.
- W3146685237 cites W2063951486 @default.
- W3146685237 cites W2066103960 @default.
- W3146685237 cites W2070552452 @default.
- W3146685237 cites W2074376560 @default.
- W3146685237 cites W2082906925 @default.
- W3146685237 cites W2093356195 @default.
- W3146685237 cites W2095827013 @default.
- W3146685237 cites W2098531347 @default.
- W3146685237 cites W2103364043 @default.
- W3146685237 cites W2107187638 @default.
- W3146685237 cites W2121008432 @default.
- W3146685237 cites W2123341385 @default.
- W3146685237 cites W2128957129 @default.
- W3146685237 cites W2134491286 @default.
- W3146685237 cites W2135640299 @default.
- W3146685237 cites W2138727818 @default.
- W3146685237 cites W2149153247 @default.
- W3146685237 cites W2166206801 @default.
- W3146685237 cites W2298475536 @default.
- W3146685237 cites W2415615379 @default.
- W3146685237 cites W2479874407 @default.
- W3146685237 cites W2511593322 @default.
- W3146685237 cites W2528818782 @default.
- W3146685237 cites W2749357784 @default.
- W3146685237 cites W2782132857 @default.
- W3146685237 cites W2784075654 @default.
- W3146685237 cites W2805003518 @default.
- W3146685237 cites W2883007291 @default.
- W3146685237 cites W2892147425 @default.
- W3146685237 cites W2896846197 @default.
- W3146685237 cites W2899290566 @default.
- W3146685237 cites W2902687238 @default.
- W3146685237 cites W2926609641 @default.
- W3146685237 cites W2943083682 @default.
- W3146685237 cites W2946857249 @default.
- W3146685237 cites W2950681333 @default.
- W3146685237 cites W2951877485 @default.
- W3146685237 cites W2952583123 @default.
- W3146685237 cites W2968451269 @default.
- W3146685237 cites W2978368159 @default.
- W3146685237 cites W2979650665 @default.
- W3146685237 cites W2997938465 @default.
- W3146685237 cites W2998412226 @default.
- W3146685237 cites W3003600398 @default.
- W3146685237 cites W3005658451 @default.
- W3146685237 cites W3008497980 @default.
- W3146685237 cites W3029261659 @default.
- W3146685237 cites W3033502539 @default.
- W3146685237 cites W3039556919 @default.
- W3146685237 cites W3080221164 @default.
- W3146685237 cites W3086360455 @default.
- W3146685237 cites W3090893979 @default.
- W3146685237 cites W3100745627 @default.
- W3146685237 cites W3105678571 @default.
- W3146685237 cites W3106277288 @default.
- W3146685237 cites W3117078785 @default.
- W3146685237 cites W3152161408 @default.
- W3146685237 cites W3174658628 @default.
- W3146685237 cites W3189057580 @default.
- W3146685237 cites W3201124393 @default.
- W3146685237 cites W4220765743 @default.
- W3146685237 cites W4230595373 @default.
- W3146685237 doi "https://doi.org/10.1101/2021.04.02.438248" @default.
- W3146685237 hasPublicationYear "2021" @default.
- W3146685237 type Work @default.
- W3146685237 sameAs 3146685237 @default.
- W3146685237 citedByCount "8" @default.
- W3146685237 countsByYear W31466852372021 @default.
- W3146685237 countsByYear W31466852372022 @default.
- W3146685237 countsByYear W31466852372023 @default.
- W3146685237 crossrefType "posted-content" @default.
- W3146685237 hasAuthorship W3146685237A5010422118 @default.
- W3146685237 hasAuthorship W3146685237A5034283312 @default.
- W3146685237 hasAuthorship W3146685237A5074159044 @default.
- W3146685237 hasAuthorship W3146685237A5079424258 @default.