Matches in SemOpenAlex for { <https://semopenalex.org/work/W3146855544> ?p ?o ?g. }
- W3146855544 endingPage "100231" @default.
- W3146855544 startingPage "100231" @default.
- W3146855544 abstract "Animal-vehicle collisions (AVCs) are common around the world and result in considerable loss of animal and human life, as well as significant property damage and regular insurance claims. Understanding their occurrence in relation to various contributing factors and being able to identify high-risk locations are valuable to AVC prevention, yielding economic, social, and environmental cost savings. However, many challenges exist in the study of AVC datasets. These include seasonality of animal activity, unknown exposure (i.e., the number of animal crossings), very low AVC counts across most sections of extensive roadway networks, and computational burdens that come with discrete response analysis using large datasets. To overcome these challenges, a Bayesian hierarchical model is proposed where the exposure is modeled with nonparametric Dirichlet process, and the number of segment-level AVCs is assumed to follow a binomial distribution. A Pólya-Gamma augmented Gibbs sampler is derived to estimate the proposed model. By using the AVC data of multiple years across about 85,000 segments of state-controlled highways in Texas, U.S., it is demonstrated that the model is scalable to large datasets, with a preponderance of zeros and clear monthly seasonality in counts, while identifying high-risk locations and key explanatory factors based on segment-specific factors (such as changes in speed limit). This can be done within the modelling framework, which provides useful information for policy-making purposes." @default.
- W3146855544 created "2021-04-13" @default.
- W3146855544 creator A5007540651 @default.
- W3146855544 creator A5045282556 @default.
- W3146855544 creator A5051046516 @default.
- W3146855544 creator A5065101605 @default.
- W3146855544 date "2022-12-01" @default.
- W3146855544 modified "2023-09-24" @default.
- W3146855544 title "Modelling animal-vehicle collision counts across large networks using a Bayesian hierarchical model with time-varying parameters" @default.
- W3146855544 cites W1180905752 @default.
- W3146855544 cites W1515196684 @default.
- W3146855544 cites W1931051978 @default.
- W3146855544 cites W1966851795 @default.
- W3146855544 cites W1973076501 @default.
- W3146855544 cites W1977404151 @default.
- W3146855544 cites W1981167838 @default.
- W3146855544 cites W1985606800 @default.
- W3146855544 cites W1986617611 @default.
- W3146855544 cites W1989238586 @default.
- W3146855544 cites W1993530600 @default.
- W3146855544 cites W1996372019 @default.
- W3146855544 cites W2000156425 @default.
- W3146855544 cites W2003042472 @default.
- W3146855544 cites W2005961250 @default.
- W3146855544 cites W2006710526 @default.
- W3146855544 cites W2008299176 @default.
- W3146855544 cites W2013635105 @default.
- W3146855544 cites W2024190520 @default.
- W3146855544 cites W2024806279 @default.
- W3146855544 cites W2033147098 @default.
- W3146855544 cites W2036197159 @default.
- W3146855544 cites W2040708765 @default.
- W3146855544 cites W2051910987 @default.
- W3146855544 cites W2054706765 @default.
- W3146855544 cites W2056883327 @default.
- W3146855544 cites W2061264264 @default.
- W3146855544 cites W2064348858 @default.
- W3146855544 cites W2067442163 @default.
- W3146855544 cites W2072169887 @default.
- W3146855544 cites W2076633824 @default.
- W3146855544 cites W2099878672 @default.
- W3146855544 cites W2101099045 @default.
- W3146855544 cites W2128326244 @default.
- W3146855544 cites W2132422289 @default.
- W3146855544 cites W2137248244 @default.
- W3146855544 cites W2138263425 @default.
- W3146855544 cites W2157636345 @default.
- W3146855544 cites W2167832071 @default.
- W3146855544 cites W2168656741 @default.
- W3146855544 cites W2287543214 @default.
- W3146855544 cites W2290227299 @default.
- W3146855544 cites W2343811890 @default.
- W3146855544 cites W2462501661 @default.
- W3146855544 cites W2464847497 @default.
- W3146855544 cites W2528265748 @default.
- W3146855544 cites W2532458641 @default.
- W3146855544 cites W2564863421 @default.
- W3146855544 cites W2761060995 @default.
- W3146855544 cites W2765174074 @default.
- W3146855544 cites W2791040474 @default.
- W3146855544 cites W2792224364 @default.
- W3146855544 cites W2895228557 @default.
- W3146855544 cites W2954038496 @default.
- W3146855544 cites W2956088716 @default.
- W3146855544 cites W2973215173 @default.
- W3146855544 cites W2987106324 @default.
- W3146855544 cites W3000998105 @default.
- W3146855544 cites W3004440210 @default.
- W3146855544 cites W3013452408 @default.
- W3146855544 cites W3014795987 @default.
- W3146855544 cites W3035470582 @default.
- W3146855544 cites W3041165664 @default.
- W3146855544 cites W3100807786 @default.
- W3146855544 cites W3107511980 @default.
- W3146855544 cites W3113004626 @default.
- W3146855544 cites W3127930247 @default.
- W3146855544 cites W3129509197 @default.
- W3146855544 cites W3132991629 @default.
- W3146855544 cites W3134656690 @default.
- W3146855544 cites W3165186421 @default.
- W3146855544 cites W316764375 @default.
- W3146855544 cites W3186976289 @default.
- W3146855544 cites W3200918080 @default.
- W3146855544 cites W4212934640 @default.
- W3146855544 cites W4221012238 @default.
- W3146855544 cites W756916738 @default.
- W3146855544 doi "https://doi.org/10.1016/j.amar.2022.100231" @default.
- W3146855544 hasPublicationYear "2022" @default.
- W3146855544 type Work @default.
- W3146855544 sameAs 3146855544 @default.
- W3146855544 citedByCount "0" @default.
- W3146855544 crossrefType "journal-article" @default.
- W3146855544 hasAuthorship W3146855544A5007540651 @default.
- W3146855544 hasAuthorship W3146855544A5045282556 @default.
- W3146855544 hasAuthorship W3146855544A5051046516 @default.
- W3146855544 hasAuthorship W3146855544A5065101605 @default.
- W3146855544 hasBestOaLocation W31468555442 @default.
- W3146855544 hasConcept C100906024 @default.