Matches in SemOpenAlex for { <https://semopenalex.org/work/W3147020900> ?p ?o ?g. }
- W3147020900 endingPage "2132" @default.
- W3147020900 startingPage "2121" @default.
- W3147020900 abstract "There is a lack of scalable quantitative measures of reactivity that cover the full range of functional groups in organic chemistry, ranging from highly unreactive C-C bonds to highly reactive naked ions. Measuring reactivity experimentally is costly and time-consuming, and no single method has sufficient dynamic range to cover the astronomical size of chemical reactivity space. In previous quantum chemistry studies, we have introduced Methyl Cation Affinities (MCA*) and Methyl Anion Affinities (MAA*), using a solvation model, as quantitative measures of reactivity for organic functional groups over the broadest range. Although MCA* and MAA* offer good estimates of reactivity parameters, their calculation through Density Functional Theory (DFT) simulations is time-consuming. To circumvent this problem, we first use DFT to calculate MCA* and MAA* for more than 2,400 organic molecules thereby establishing a large data set of chemical reactivity scores. We then design deep learning methods to predict the reactivity of molecular structures and train them using this curated data set in combination with different representations of molecular structures. Using 10-fold cross-validation, we show that graph attention neural networks applied to a relational model of molecular structures produce the most accurate estimates of reactivity, achieving over 91% test accuracy for predicting the MCA* ± 3.0 or MAA* ± 3.0, over 50 orders of magnitude. Finally, we demonstrate the application of these reactivity scores to two tasks: (1) chemical reaction prediction and (2) combinatorial generation of reaction mechanisms. The curated data sets of MCA* and MAA* scores is available through the ChemDB chemoinformatics web portal at cdb.ics.uci.edu under Chemical Reactivities data sets." @default.
- W3147020900 created "2021-04-13" @default.
- W3147020900 creator A5049642454 @default.
- W3147020900 creator A5051408309 @default.
- W3147020900 creator A5081882130 @default.
- W3147020900 creator A5088813478 @default.
- W3147020900 date "2022-01-12" @default.
- W3147020900 modified "2023-10-14" @default.
- W3147020900 title "Quantum Mechanics and Machine Learning Synergies: Graph Attention Neural Networks to Predict Chemical Reactivity" @default.
- W3147020900 cites W1954521139 @default.
- W3147020900 cites W1964502429 @default.
- W3147020900 cites W1971812208 @default.
- W3147020900 cites W1973166400 @default.
- W3147020900 cites W1975147762 @default.
- W3147020900 cites W1988037271 @default.
- W3147020900 cites W1994696454 @default.
- W3147020900 cites W1994773789 @default.
- W3147020900 cites W2015822304 @default.
- W3147020900 cites W2016438001 @default.
- W3147020900 cites W2020786104 @default.
- W3147020900 cites W2023390323 @default.
- W3147020900 cites W2028022118 @default.
- W3147020900 cites W2033145782 @default.
- W3147020900 cites W2046589863 @default.
- W3147020900 cites W2048303918 @default.
- W3147020900 cites W2055563809 @default.
- W3147020900 cites W2058496183 @default.
- W3147020900 cites W2066412916 @default.
- W3147020900 cites W2067612728 @default.
- W3147020900 cites W2080635178 @default.
- W3147020900 cites W2090127354 @default.
- W3147020900 cites W2092048296 @default.
- W3147020900 cites W2095262066 @default.
- W3147020900 cites W2096363118 @default.
- W3147020900 cites W2096747776 @default.
- W3147020900 cites W2114704115 @default.
- W3147020900 cites W2137262074 @default.
- W3147020900 cites W2155604981 @default.
- W3147020900 cites W2164370980 @default.
- W3147020900 cites W2166051062 @default.
- W3147020900 cites W2199485679 @default.
- W3147020900 cites W2290847742 @default.
- W3147020900 cites W2315471309 @default.
- W3147020900 cites W2322902045 @default.
- W3147020900 cites W2345136733 @default.
- W3147020900 cites W2538573120 @default.
- W3147020900 cites W2592262780 @default.
- W3147020900 cites W2604314403 @default.
- W3147020900 cites W2606363443 @default.
- W3147020900 cites W2610148085 @default.
- W3147020900 cites W2621742623 @default.
- W3147020900 cites W2754447875 @default.
- W3147020900 cites W2775684663 @default.
- W3147020900 cites W2782636657 @default.
- W3147020900 cites W2801741415 @default.
- W3147020900 cites W2895884529 @default.
- W3147020900 cites W2903262661 @default.
- W3147020900 cites W2953176148 @default.
- W3147020900 cites W2963396480 @default.
- W3147020900 cites W3004164548 @default.
- W3147020900 cites W3004981438 @default.
- W3147020900 cites W3012519883 @default.
- W3147020900 cites W3015135863 @default.
- W3147020900 cites W3103092523 @default.
- W3147020900 cites W3104114886 @default.
- W3147020900 cites W3104956673 @default.
- W3147020900 cites W3118349318 @default.
- W3147020900 cites W3135034047 @default.
- W3147020900 cites W3135942277 @default.
- W3147020900 cites W3187163767 @default.
- W3147020900 cites W4213196194 @default.
- W3147020900 cites W4243148237 @default.
- W3147020900 cites W4255889725 @default.
- W3147020900 doi "https://doi.org/10.1021/acs.jcim.1c01400" @default.
- W3147020900 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35020394" @default.
- W3147020900 hasPublicationYear "2022" @default.
- W3147020900 type Work @default.
- W3147020900 sameAs 3147020900 @default.
- W3147020900 citedByCount "12" @default.
- W3147020900 countsByYear W31470209002022 @default.
- W3147020900 countsByYear W31470209002023 @default.
- W3147020900 crossrefType "journal-article" @default.
- W3147020900 hasAuthorship W3147020900A5049642454 @default.
- W3147020900 hasAuthorship W3147020900A5051408309 @default.
- W3147020900 hasAuthorship W3147020900A5081882130 @default.
- W3147020900 hasAuthorship W3147020900A5088813478 @default.
- W3147020900 hasBestOaLocation W31470209002 @default.
- W3147020900 hasConcept C142724271 @default.
- W3147020900 hasConcept C147597530 @default.
- W3147020900 hasConcept C148093993 @default.
- W3147020900 hasConcept C152365726 @default.
- W3147020900 hasConcept C178790620 @default.
- W3147020900 hasConcept C185592680 @default.
- W3147020900 hasConcept C204787440 @default.
- W3147020900 hasConcept C2776910235 @default.
- W3147020900 hasConcept C2780283098 @default.
- W3147020900 hasConcept C32909587 @default.
- W3147020900 hasConcept C41008148 @default.