Matches in SemOpenAlex for { <https://semopenalex.org/work/W3147063032> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3147063032 endingPage "10" @default.
- W3147063032 startingPage "1" @default.
- W3147063032 abstract "With the advent of the Big Data era, information and data are growing in spurts, fueling the deep application of information technology in all levels of society. It is especially important to use data mining technology to study the industry trends behind the data and to explore the information value contained in the massive data. As teaching and learning in higher education continue to advance, student academic and administrative data are growing at a rapid pace. In this paper, we make full use of student academic data and campus behavior data to analyze the data inherent patterns and correlations and use these patterns rationally to provide guidance for teaching activities and teaching management, thus further improving the quality of teaching management. The establishment of a data-mining-technology-based college repetition warning system can help student management departments to strengthen supervision, provide timely warning information for college teaching management as well as leaders and counselors’ decision-making, and thus provide early help to students with repetition warnings. In this paper, we use the global search advantage of genetic algorithm to build a GABP hybrid prediction model to solve the local minimum problem of BP neural network algorithm. The data validation results show that Recall reaches 95% and F1 result is about 86%, and the accuracy of the algorithm prediction results is improved significantly. It can provide a solid data support basis for college administrators to predict retention. Finally, the problems in the application of the retention prediction model are analyzed and corresponding suggestions are given." @default.
- W3147063032 created "2021-04-13" @default.
- W3147063032 creator A5072748292 @default.
- W3147063032 date "2021-04-01" @default.
- W3147063032 modified "2023-10-18" @default.
- W3147063032 title "Online English Teaching Course Score Analysis Based on Decision Tree Mining Algorithm" @default.
- W3147063032 cites W2517850251 @default.
- W3147063032 cites W2569349941 @default.
- W3147063032 cites W2606436201 @default.
- W3147063032 cites W2611984779 @default.
- W3147063032 cites W2615770924 @default.
- W3147063032 cites W2617503162 @default.
- W3147063032 cites W2620887944 @default.
- W3147063032 cites W2747902582 @default.
- W3147063032 cites W2773197356 @default.
- W3147063032 cites W2817736394 @default.
- W3147063032 cites W2883988631 @default.
- W3147063032 cites W2897757649 @default.
- W3147063032 cites W2937780158 @default.
- W3147063032 cites W2964398153 @default.
- W3147063032 cites W2971009936 @default.
- W3147063032 cites W2999615587 @default.
- W3147063032 cites W3013509910 @default.
- W3147063032 cites W3019634047 @default.
- W3147063032 cites W3036366327 @default.
- W3147063032 doi "https://doi.org/10.1155/2021/5577167" @default.
- W3147063032 hasPublicationYear "2021" @default.
- W3147063032 type Work @default.
- W3147063032 sameAs 3147063032 @default.
- W3147063032 citedByCount "6" @default.
- W3147063032 countsByYear W31470630322021 @default.
- W3147063032 countsByYear W31470630322022 @default.
- W3147063032 crossrefType "journal-article" @default.
- W3147063032 hasAuthorship W3147063032A5072748292 @default.
- W3147063032 hasBestOaLocation W31470630321 @default.
- W3147063032 hasConcept C100660578 @default.
- W3147063032 hasConcept C111472728 @default.
- W3147063032 hasConcept C11413529 @default.
- W3147063032 hasConcept C119857082 @default.
- W3147063032 hasConcept C124101348 @default.
- W3147063032 hasConcept C13280743 @default.
- W3147063032 hasConcept C138885662 @default.
- W3147063032 hasConcept C154945302 @default.
- W3147063032 hasConcept C205649164 @default.
- W3147063032 hasConcept C2777526511 @default.
- W3147063032 hasConcept C2779530757 @default.
- W3147063032 hasConcept C29825287 @default.
- W3147063032 hasConcept C41008148 @default.
- W3147063032 hasConcept C41895202 @default.
- W3147063032 hasConcept C50644808 @default.
- W3147063032 hasConcept C75684735 @default.
- W3147063032 hasConcept C76155785 @default.
- W3147063032 hasConcept C84525736 @default.
- W3147063032 hasConcept C8880873 @default.
- W3147063032 hasConceptScore W3147063032C100660578 @default.
- W3147063032 hasConceptScore W3147063032C111472728 @default.
- W3147063032 hasConceptScore W3147063032C11413529 @default.
- W3147063032 hasConceptScore W3147063032C119857082 @default.
- W3147063032 hasConceptScore W3147063032C124101348 @default.
- W3147063032 hasConceptScore W3147063032C13280743 @default.
- W3147063032 hasConceptScore W3147063032C138885662 @default.
- W3147063032 hasConceptScore W3147063032C154945302 @default.
- W3147063032 hasConceptScore W3147063032C205649164 @default.
- W3147063032 hasConceptScore W3147063032C2777526511 @default.
- W3147063032 hasConceptScore W3147063032C2779530757 @default.
- W3147063032 hasConceptScore W3147063032C29825287 @default.
- W3147063032 hasConceptScore W3147063032C41008148 @default.
- W3147063032 hasConceptScore W3147063032C41895202 @default.
- W3147063032 hasConceptScore W3147063032C50644808 @default.
- W3147063032 hasConceptScore W3147063032C75684735 @default.
- W3147063032 hasConceptScore W3147063032C76155785 @default.
- W3147063032 hasConceptScore W3147063032C84525736 @default.
- W3147063032 hasConceptScore W3147063032C8880873 @default.
- W3147063032 hasLocation W31470630321 @default.
- W3147063032 hasLocation W31470630322 @default.
- W3147063032 hasOpenAccess W3147063032 @default.
- W3147063032 hasPrimaryLocation W31470630321 @default.
- W3147063032 hasRelatedWork W1470425429 @default.
- W3147063032 hasRelatedWork W3014300295 @default.
- W3147063032 hasRelatedWork W3200719183 @default.
- W3147063032 hasRelatedWork W3210877509 @default.
- W3147063032 hasRelatedWork W4205958290 @default.
- W3147063032 hasRelatedWork W4249746146 @default.
- W3147063032 hasRelatedWork W4283016678 @default.
- W3147063032 hasRelatedWork W4306321456 @default.
- W3147063032 hasRelatedWork W4318350883 @default.
- W3147063032 hasRelatedWork W4328134586 @default.
- W3147063032 hasVolume "2021" @default.
- W3147063032 isParatext "false" @default.
- W3147063032 isRetracted "false" @default.
- W3147063032 magId "3147063032" @default.
- W3147063032 workType "article" @default.