Matches in SemOpenAlex for { <https://semopenalex.org/work/W3147145110> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3147145110 abstract "We study the estimation of a high dimensional approximate factor model in the presence of both cross sectional dependence and heteroskedasticity. The classical method of principal components analysis (PCA) does not efficiently estimate the factor loadings or common factors because it essentially treats the idiosyncratic error to be homoskedastic and cross sectionally uncorrelated. For the efficient estimation, it is essential to estimate a large error covariance matrix. We assume the model to be conditionally sparse, and propose two approaches to estimating the common factors and factor loadings; both are based on maximizing a Gaussian quasi-likelihood and involve regularizing a large covariance sparse matrix. In the first approach the factor loadings and the error covariance are estimated separately while in the second approach they are estimated jointly. Extensive asymptotic analysis has been carried out. In particular, we develop the inferential theory for the two-step estimation. Because the proposed approaches take into account the large error covariance matrix, they produce more efficient estimators than the classical PCA methods or methods based on a strict factor model." @default.
- W3147145110 created "2021-04-13" @default.
- W3147145110 creator A5000908702 @default.
- W3147145110 creator A5085415365 @default.
- W3147145110 date "2012-09-01" @default.
- W3147145110 modified "2023-10-18" @default.
- W3147145110 title "Efficient Estimation of Approximate Factor Models" @default.
- W3147145110 hasPublicationYear "2012" @default.
- W3147145110 type Work @default.
- W3147145110 sameAs 3147145110 @default.
- W3147145110 citedByCount "0" @default.
- W3147145110 crossrefType "posted-content" @default.
- W3147145110 hasAuthorship W3147145110A5000908702 @default.
- W3147145110 hasAuthorship W3147145110A5085415365 @default.
- W3147145110 hasConcept C101104100 @default.
- W3147145110 hasConcept C105795698 @default.
- W3147145110 hasConcept C106487976 @default.
- W3147145110 hasConcept C10879293 @default.
- W3147145110 hasConcept C121332964 @default.
- W3147145110 hasConcept C126255220 @default.
- W3147145110 hasConcept C149782125 @default.
- W3147145110 hasConcept C159985019 @default.
- W3147145110 hasConcept C163716315 @default.
- W3147145110 hasConcept C178650346 @default.
- W3147145110 hasConcept C180877172 @default.
- W3147145110 hasConcept C185142706 @default.
- W3147145110 hasConcept C185429906 @default.
- W3147145110 hasConcept C192562407 @default.
- W3147145110 hasConcept C27438332 @default.
- W3147145110 hasConcept C28826006 @default.
- W3147145110 hasConcept C33923547 @default.
- W3147145110 hasConcept C62520636 @default.
- W3147145110 hasConceptScore W3147145110C101104100 @default.
- W3147145110 hasConceptScore W3147145110C105795698 @default.
- W3147145110 hasConceptScore W3147145110C106487976 @default.
- W3147145110 hasConceptScore W3147145110C10879293 @default.
- W3147145110 hasConceptScore W3147145110C121332964 @default.
- W3147145110 hasConceptScore W3147145110C126255220 @default.
- W3147145110 hasConceptScore W3147145110C149782125 @default.
- W3147145110 hasConceptScore W3147145110C159985019 @default.
- W3147145110 hasConceptScore W3147145110C163716315 @default.
- W3147145110 hasConceptScore W3147145110C178650346 @default.
- W3147145110 hasConceptScore W3147145110C180877172 @default.
- W3147145110 hasConceptScore W3147145110C185142706 @default.
- W3147145110 hasConceptScore W3147145110C185429906 @default.
- W3147145110 hasConceptScore W3147145110C192562407 @default.
- W3147145110 hasConceptScore W3147145110C27438332 @default.
- W3147145110 hasConceptScore W3147145110C28826006 @default.
- W3147145110 hasConceptScore W3147145110C33923547 @default.
- W3147145110 hasConceptScore W3147145110C62520636 @default.
- W3147145110 hasLocation W31471451101 @default.
- W3147145110 hasOpenAccess W3147145110 @default.
- W3147145110 hasPrimaryLocation W31471451101 @default.
- W3147145110 hasRelatedWork W1954814369 @default.
- W3147145110 hasRelatedWork W1967941384 @default.
- W3147145110 hasRelatedWork W2119498884 @default.
- W3147145110 hasRelatedWork W2155569237 @default.
- W3147145110 hasRelatedWork W2212929876 @default.
- W3147145110 hasRelatedWork W2260046953 @default.
- W3147145110 hasRelatedWork W2467466245 @default.
- W3147145110 hasRelatedWork W2598656832 @default.
- W3147145110 hasRelatedWork W2746163121 @default.
- W3147145110 hasRelatedWork W2786380744 @default.
- W3147145110 hasRelatedWork W2909685392 @default.
- W3147145110 hasRelatedWork W2962988625 @default.
- W3147145110 hasRelatedWork W2963507011 @default.
- W3147145110 hasRelatedWork W2963840025 @default.
- W3147145110 hasRelatedWork W2964105278 @default.
- W3147145110 hasRelatedWork W3103757612 @default.
- W3147145110 hasRelatedWork W3104507223 @default.
- W3147145110 hasRelatedWork W3124195476 @default.
- W3147145110 hasRelatedWork W3124725506 @default.
- W3147145110 hasRelatedWork W3163411424 @default.
- W3147145110 isParatext "false" @default.
- W3147145110 isRetracted "false" @default.
- W3147145110 magId "3147145110" @default.
- W3147145110 workType "article" @default.