Matches in SemOpenAlex for { <https://semopenalex.org/work/W3147148194> ?p ?o ?g. }
- W3147148194 endingPage "52265" @default.
- W3147148194 startingPage "52252" @default.
- W3147148194 abstract "Persistent organic pollutants (POPs) are highly toxic and difficult to degrade in the natural ecology, which has a severe negative impact on the ecological environment. Quantifying changes in the concentrations of persistent organic pollutants in the Great Lakes is challenging work. Machine learning (ML) methods are potent predictors that have recently achieved impressive performance on time series tasks. ARIMA model, Linear Regression methods, XGBoost algorithm, and Long Short-Term Memory (LSTM) are commonly used for estimating time-series changes. Traditionally Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) have been standard criteria to measure the error between the actual value and predicted value; however, Euclidean distance (ED) cannot effectively calculate the similarity between two-time series. We proposed an alternative criterion called Penalty Dynamic Time Wrapping (Penalty-DTW) based on Dynamic Time Wrapping (DTW). It can accurately measure the difference between the actual value and the predicted value. We study the benefits of Penalty-DTW vs. ED under the above ML algorithms. Further, considering the machine learning algorithm's uncertainty, we proposed combining LSTM and deep ensemble methods to quantify algorithms uncertainty and make a confident prediction. We find improved LSTM model outperformed other predictive power models by comparing pollutant concentration prediction. The prediction results show that the concentration of pollutants has a stable downward trend in recent years. Simultaneously, we found that pollutants' concentration correlates with seasons, which positively guides environmental pollution control in the Great Lakes." @default.
- W3147148194 created "2021-04-13" @default.
- W3147148194 creator A5029695887 @default.
- W3147148194 creator A5039415171 @default.
- W3147148194 creator A5040502396 @default.
- W3147148194 date "2021-01-01" @default.
- W3147148194 modified "2023-10-01" @default.
- W3147148194 title "An Effective Machine Learning Scheme to Analyze and Predict the Concentration of Persistent Pollutants in the Great Lakes" @default.
- W3147148194 cites W1901616594 @default.
- W3147148194 cites W1986819880 @default.
- W3147148194 cites W1993586171 @default.
- W3147148194 cites W2005403210 @default.
- W3147148194 cites W2012365675 @default.
- W3147148194 cites W2064675550 @default.
- W3147148194 cites W2102148524 @default.
- W3147148194 cites W2108401663 @default.
- W3147148194 cites W2111051539 @default.
- W3147148194 cites W2146948209 @default.
- W3147148194 cites W2150503350 @default.
- W3147148194 cites W2156301828 @default.
- W3147148194 cites W2158301611 @default.
- W3147148194 cites W2160815625 @default.
- W3147148194 cites W2313913166 @default.
- W3147148194 cites W2428524794 @default.
- W3147148194 cites W2520014603 @default.
- W3147148194 cites W2617137613 @default.
- W3147148194 cites W2751125473 @default.
- W3147148194 cites W2782982918 @default.
- W3147148194 cites W2884001105 @default.
- W3147148194 cites W2885195348 @default.
- W3147148194 cites W2905872298 @default.
- W3147148194 cites W2909877301 @default.
- W3147148194 cites W2930669685 @default.
- W3147148194 cites W2945388506 @default.
- W3147148194 cites W2954482899 @default.
- W3147148194 cites W2995808073 @default.
- W3147148194 cites W3014864081 @default.
- W3147148194 cites W3041032185 @default.
- W3147148194 cites W3048934578 @default.
- W3147148194 cites W3101380508 @default.
- W3147148194 cites W3102476541 @default.
- W3147148194 cites W3113162495 @default.
- W3147148194 cites W4214625488 @default.
- W3147148194 cites W4230644069 @default.
- W3147148194 cites W58346954 @default.
- W3147148194 doi "https://doi.org/10.1109/access.2021.3069990" @default.
- W3147148194 hasPublicationYear "2021" @default.
- W3147148194 type Work @default.
- W3147148194 sameAs 3147148194 @default.
- W3147148194 citedByCount "4" @default.
- W3147148194 countsByYear W31471481942022 @default.
- W3147148194 countsByYear W31471481942023 @default.
- W3147148194 crossrefType "journal-article" @default.
- W3147148194 hasAuthorship W3147148194A5029695887 @default.
- W3147148194 hasAuthorship W3147148194A5039415171 @default.
- W3147148194 hasAuthorship W3147148194A5040502396 @default.
- W3147148194 hasBestOaLocation W31471481941 @default.
- W3147148194 hasConcept C103278499 @default.
- W3147148194 hasConcept C105795698 @default.
- W3147148194 hasConcept C115961682 @default.
- W3147148194 hasConcept C119857082 @default.
- W3147148194 hasConcept C120174047 @default.
- W3147148194 hasConcept C121332964 @default.
- W3147148194 hasConcept C139945424 @default.
- W3147148194 hasConcept C143724316 @default.
- W3147148194 hasConcept C151406439 @default.
- W3147148194 hasConcept C151730666 @default.
- W3147148194 hasConcept C154945302 @default.
- W3147148194 hasConcept C18903297 @default.
- W3147148194 hasConcept C24338571 @default.
- W3147148194 hasConcept C33923547 @default.
- W3147148194 hasConcept C41008148 @default.
- W3147148194 hasConcept C61797465 @default.
- W3147148194 hasConcept C62520636 @default.
- W3147148194 hasConcept C82685317 @default.
- W3147148194 hasConcept C83546350 @default.
- W3147148194 hasConcept C86803240 @default.
- W3147148194 hasConceptScore W3147148194C103278499 @default.
- W3147148194 hasConceptScore W3147148194C105795698 @default.
- W3147148194 hasConceptScore W3147148194C115961682 @default.
- W3147148194 hasConceptScore W3147148194C119857082 @default.
- W3147148194 hasConceptScore W3147148194C120174047 @default.
- W3147148194 hasConceptScore W3147148194C121332964 @default.
- W3147148194 hasConceptScore W3147148194C139945424 @default.
- W3147148194 hasConceptScore W3147148194C143724316 @default.
- W3147148194 hasConceptScore W3147148194C151406439 @default.
- W3147148194 hasConceptScore W3147148194C151730666 @default.
- W3147148194 hasConceptScore W3147148194C154945302 @default.
- W3147148194 hasConceptScore W3147148194C18903297 @default.
- W3147148194 hasConceptScore W3147148194C24338571 @default.
- W3147148194 hasConceptScore W3147148194C33923547 @default.
- W3147148194 hasConceptScore W3147148194C41008148 @default.
- W3147148194 hasConceptScore W3147148194C61797465 @default.
- W3147148194 hasConceptScore W3147148194C62520636 @default.
- W3147148194 hasConceptScore W3147148194C82685317 @default.
- W3147148194 hasConceptScore W3147148194C83546350 @default.
- W3147148194 hasConceptScore W3147148194C86803240 @default.
- W3147148194 hasFunder F4320335777 @default.