Matches in SemOpenAlex for { <https://semopenalex.org/work/W3147202421> ?p ?o ?g. }
- W3147202421 endingPage "37" @default.
- W3147202421 startingPage "10" @default.
- W3147202421 abstract "Polyesters and polyamides are commercially important polymers prepared by polycondensation. The conventional solution to melt polymerization techniques stop at a low or medium molecular weight product, due to problems arising from severe increase of the melt viscosity and operating temperatures. Higher molecular weights may be reached by Solid State Polymerization (SSP) at temperatures between the glass transition and the onset of melting. Polycondensation progresses through chain end reactions in the amorphous phase of the semicrystalline polymer, which in most cases is in the form of flakes (mean diameter>1.0 mm) or powder (mean diameter<100 μm); reaction by-products are removed by application of vacuum or through convection caused by passing an inert gas. The advantages of SSP include low operating temperatures, which restrain side reactions and thermal degradation of the product, while requiring inexpensive equipment, and uncomplicated and environmentally sound procedures. Disadvantages of SSP focus on low reaction rates, compared to melt phase polymerization, and possible solid particle processability problems arising from sintering. The review begins with a theoretical background regarding SSP, the fundamentals of techniques and equipment, including the use of inert gas in reactive systems. Further, it is explained how SSP progress involves both chemical and physical steps, since it is controlled by reaction kinetics, reactive chain-end mobility in the amorphous phase, and condensate removal through diffusion. The reaction temperature emerges as the most important parameter of SSP rate variation, due to its interaction with all aspects of the process. High prepolymer molecular weight affects positively the SSP rate, since it is accompanied by elevated degrees of crystallinity; this implies more effective confinement of the amorphous phase and, therefore high concentration and homogeneous distribution of reactive chain ends in the non-crystalline regions. Similarly, refinement in reacting particle size distribution and morphology, in conjunction with high gas flow rates, increases the interfacial area per unit volume and the effectiveness of convective by-product elimination. Finally, the SSP rate increases principally by the use of phosphorous catalysts, which also reduce agglomeration. In the following sections of this review, emphasis is on the progress in experimentally determining the intrinsic rate constants of principal relevant chemical reactions. The corresponding kinetic models are either based on the Flory theory, where the rate expressions are in terms of end-group concentrations, or on a power-law description of the rate with respect to reaction time. Recent advances in modeling and large scale simulation of the various physical and chemical processes occurring within a SSP reactor are reported. The goal is to describe the dynamic evolution of all chemical species within the particle and its surroundings, and assess its dependence on basic process variables. Finally, special focus is given on methods of manipulating the molecular weight distribution of the SSP product, by varying prepolymer particle size distribution, initial stoichiometry and condensate content in the surroundings." @default.
- W3147202421 created "2021-04-13" @default.
- W3147202421 creator A5004019888 @default.
- W3147202421 creator A5059965085 @default.
- W3147202421 creator A5075745428 @default.
- W3147202421 date "2005-01-01" @default.
- W3147202421 modified "2023-10-14" @default.
- W3147202421 title "Solid state polymerization" @default.
- W3147202421 cites W1923203291 @default.
- W3147202421 cites W1939584162 @default.
- W3147202421 cites W1949524460 @default.
- W3147202421 cites W1963828867 @default.
- W3147202421 cites W1963847821 @default.
- W3147202421 cites W1964733157 @default.
- W3147202421 cites W1966365420 @default.
- W3147202421 cites W1967365949 @default.
- W3147202421 cites W1971218377 @default.
- W3147202421 cites W1976756702 @default.
- W3147202421 cites W1976903458 @default.
- W3147202421 cites W1976961225 @default.
- W3147202421 cites W1978098438 @default.
- W3147202421 cites W1979296767 @default.
- W3147202421 cites W1982079692 @default.
- W3147202421 cites W1983541653 @default.
- W3147202421 cites W1988897114 @default.
- W3147202421 cites W1990069988 @default.
- W3147202421 cites W1990791962 @default.
- W3147202421 cites W1992964379 @default.
- W3147202421 cites W1997499034 @default.
- W3147202421 cites W1998163678 @default.
- W3147202421 cites W1998412815 @default.
- W3147202421 cites W1998934108 @default.
- W3147202421 cites W1999067755 @default.
- W3147202421 cites W2000326780 @default.
- W3147202421 cites W2004396749 @default.
- W3147202421 cites W2014883943 @default.
- W3147202421 cites W2015062233 @default.
- W3147202421 cites W2016361280 @default.
- W3147202421 cites W2016936878 @default.
- W3147202421 cites W2017888533 @default.
- W3147202421 cites W2022540540 @default.
- W3147202421 cites W2027809174 @default.
- W3147202421 cites W2027813836 @default.
- W3147202421 cites W2028100247 @default.
- W3147202421 cites W2030394166 @default.
- W3147202421 cites W2033981834 @default.
- W3147202421 cites W2035409991 @default.
- W3147202421 cites W2036733555 @default.
- W3147202421 cites W2039860427 @default.
- W3147202421 cites W2040046555 @default.
- W3147202421 cites W2044458006 @default.
- W3147202421 cites W2047556115 @default.
- W3147202421 cites W2052477950 @default.
- W3147202421 cites W2055530396 @default.
- W3147202421 cites W2058439827 @default.
- W3147202421 cites W2066819266 @default.
- W3147202421 cites W2075024736 @default.
- W3147202421 cites W2077710587 @default.
- W3147202421 cites W2080397162 @default.
- W3147202421 cites W2081443541 @default.
- W3147202421 cites W2084084683 @default.
- W3147202421 cites W2084621245 @default.
- W3147202421 cites W2087375765 @default.
- W3147202421 cites W2088036774 @default.
- W3147202421 cites W2089751359 @default.
- W3147202421 cites W2092710664 @default.
- W3147202421 cites W2095226953 @default.
- W3147202421 cites W2098906389 @default.
- W3147202421 cites W2102531854 @default.
- W3147202421 cites W2103593975 @default.
- W3147202421 cites W2104615215 @default.
- W3147202421 cites W2114547129 @default.
- W3147202421 cites W2130220029 @default.
- W3147202421 cites W2131862780 @default.
- W3147202421 cites W2134627966 @default.
- W3147202421 cites W2136055478 @default.
- W3147202421 cites W2143460841 @default.
- W3147202421 cites W2143805229 @default.
- W3147202421 cites W2151267129 @default.
- W3147202421 cites W2152949844 @default.
- W3147202421 cites W2153481430 @default.
- W3147202421 cites W2154941897 @default.
- W3147202421 cites W2160230658 @default.
- W3147202421 cites W2317309655 @default.
- W3147202421 cites W2321101853 @default.
- W3147202421 cites W2325203155 @default.
- W3147202421 cites W2897597129 @default.
- W3147202421 cites W3022665010 @default.
- W3147202421 cites W4247893675 @default.
- W3147202421 cites W4256346205 @default.
- W3147202421 doi "https://doi.org/10.1016/j.progpolymsci.2004.11.001" @default.
- W3147202421 hasPublicationYear "2005" @default.
- W3147202421 type Work @default.
- W3147202421 sameAs 3147202421 @default.
- W3147202421 citedByCount "164" @default.
- W3147202421 countsByYear W31472024212012 @default.
- W3147202421 countsByYear W31472024212013 @default.
- W3147202421 countsByYear W31472024212014 @default.