Matches in SemOpenAlex for { <https://semopenalex.org/work/W3147227704> ?p ?o ?g. }
- W3147227704 endingPage "3489" @default.
- W3147227704 startingPage "3480" @default.
- W3147227704 abstract "Model updating processes are important for improving a model’s accuracy by considering experimental data. Structural system identification was achieved here by applying the degree-of-freedom-based reduction method and the inverse perturbation method. Experimental data were obtained using the specific sensor location selection method. Experimental vibration data were restored to a full finite element model using the reduction method to compare and update the numerical model. Applied iteratively, the improved reduced system method boosts model accuracy during full model restoration; however, iterative processes are time consuming. The computation efficiency was improved using the system equivalent reduction–expansion process in concert with proper orthogonal decomposition. A convolutional neural network was trained and applied to the updating process. We propose the use of an efficient model updating method using a convolutional neural network to reduce computation time. Experimental and numerical examples were adopted to examine the efficiency and accuracy of the model updating method using a convolutional neural network." @default.
- W3147227704 created "2021-04-13" @default.
- W3147227704 creator A5008311630 @default.
- W3147227704 creator A5018347257 @default.
- W3147227704 creator A5058919213 @default.
- W3147227704 date "2021-09-01" @default.
- W3147227704 modified "2023-09-28" @default.
- W3147227704 title "Efficient Model Updating Method for System Identification Using a Convolutional Neural Network" @default.
- W3147227704 cites W1487181509 @default.
- W3147227704 cites W1968781827 @default.
- W3147227704 cites W1972743705 @default.
- W3147227704 cites W1978829847 @default.
- W3147227704 cites W1984253018 @default.
- W3147227704 cites W1988503760 @default.
- W3147227704 cites W1996524657 @default.
- W3147227704 cites W1997238880 @default.
- W3147227704 cites W1998856676 @default.
- W3147227704 cites W2001028040 @default.
- W3147227704 cites W2003652021 @default.
- W3147227704 cites W2024414262 @default.
- W3147227704 cites W2024722376 @default.
- W3147227704 cites W2027189529 @default.
- W3147227704 cites W2030160181 @default.
- W3147227704 cites W2041112566 @default.
- W3147227704 cites W2045161163 @default.
- W3147227704 cites W2069450330 @default.
- W3147227704 cites W2072865495 @default.
- W3147227704 cites W2076307983 @default.
- W3147227704 cites W2079783053 @default.
- W3147227704 cites W2080673722 @default.
- W3147227704 cites W2092020230 @default.
- W3147227704 cites W2136371752 @default.
- W3147227704 cites W2567592975 @default.
- W3147227704 cites W2914476669 @default.
- W3147227704 cites W2920968208 @default.
- W3147227704 cites W2942829333 @default.
- W3147227704 cites W2950372810 @default.
- W3147227704 cites W4378626580 @default.
- W3147227704 cites W3151430914 @default.
- W3147227704 doi "https://doi.org/10.2514/1.j059964" @default.
- W3147227704 hasPublicationYear "2021" @default.
- W3147227704 type Work @default.
- W3147227704 sameAs 3147227704 @default.
- W3147227704 citedByCount "8" @default.
- W3147227704 countsByYear W31472277042021 @default.
- W3147227704 countsByYear W31472277042022 @default.
- W3147227704 countsByYear W31472277042023 @default.
- W3147227704 crossrefType "journal-article" @default.
- W3147227704 hasAuthorship W3147227704A5008311630 @default.
- W3147227704 hasAuthorship W3147227704A5018347257 @default.
- W3147227704 hasAuthorship W3147227704A5058919213 @default.
- W3147227704 hasConcept C111335779 @default.
- W3147227704 hasConcept C111919701 @default.
- W3147227704 hasConcept C11413529 @default.
- W3147227704 hasConcept C119247159 @default.
- W3147227704 hasConcept C137776501 @default.
- W3147227704 hasConcept C154945302 @default.
- W3147227704 hasConcept C2524010 @default.
- W3147227704 hasConcept C2984998066 @default.
- W3147227704 hasConcept C33923547 @default.
- W3147227704 hasConcept C41008148 @default.
- W3147227704 hasConcept C45374587 @default.
- W3147227704 hasConcept C50644808 @default.
- W3147227704 hasConcept C6557445 @default.
- W3147227704 hasConcept C67186912 @default.
- W3147227704 hasConcept C77088390 @default.
- W3147227704 hasConcept C81363708 @default.
- W3147227704 hasConcept C86803240 @default.
- W3147227704 hasConcept C98045186 @default.
- W3147227704 hasConceptScore W3147227704C111335779 @default.
- W3147227704 hasConceptScore W3147227704C111919701 @default.
- W3147227704 hasConceptScore W3147227704C11413529 @default.
- W3147227704 hasConceptScore W3147227704C119247159 @default.
- W3147227704 hasConceptScore W3147227704C137776501 @default.
- W3147227704 hasConceptScore W3147227704C154945302 @default.
- W3147227704 hasConceptScore W3147227704C2524010 @default.
- W3147227704 hasConceptScore W3147227704C2984998066 @default.
- W3147227704 hasConceptScore W3147227704C33923547 @default.
- W3147227704 hasConceptScore W3147227704C41008148 @default.
- W3147227704 hasConceptScore W3147227704C45374587 @default.
- W3147227704 hasConceptScore W3147227704C50644808 @default.
- W3147227704 hasConceptScore W3147227704C6557445 @default.
- W3147227704 hasConceptScore W3147227704C67186912 @default.
- W3147227704 hasConceptScore W3147227704C77088390 @default.
- W3147227704 hasConceptScore W3147227704C81363708 @default.
- W3147227704 hasConceptScore W3147227704C86803240 @default.
- W3147227704 hasConceptScore W3147227704C98045186 @default.
- W3147227704 hasFunder F4320322120 @default.
- W3147227704 hasIssue "9" @default.
- W3147227704 hasLocation W31472277041 @default.
- W3147227704 hasOpenAccess W3147227704 @default.
- W3147227704 hasPrimaryLocation W31472277041 @default.
- W3147227704 hasRelatedWork W2735477435 @default.
- W3147227704 hasRelatedWork W2748454020 @default.
- W3147227704 hasRelatedWork W2805908200 @default.
- W3147227704 hasRelatedWork W2807436399 @default.
- W3147227704 hasRelatedWork W3001728219 @default.
- W3147227704 hasRelatedWork W3016958897 @default.