Matches in SemOpenAlex for { <https://semopenalex.org/work/W3147227983> ?p ?o ?g. }
- W3147227983 endingPage "12" @default.
- W3147227983 startingPage "1" @default.
- W3147227983 abstract "In the actual scenario, it is difficult for an automatic diagnosis system to detect each heartbeat when facing new patients. In this article, a novel active dual-scale residual convolutional long short-term memory neural network is proposed to classify heartbeats interactively and automatically. First, each heartbeat and electrocardiogram segment including current heartbeat are combined to build dual-scale input information. In addition, convolution layers, residual block, and bidirectional long short memory are integrated to extract features from dual-scale inputs. Furthermore, active learning approach with random breaking-ties selection strategy is introduced to choose the most representative unlabeled samples for labeling and fine-tune the trained model with these representative labeled samples. The experimental results show that the proposed method uses only 5.14% of the additional data set and improves the model accuracy and macro F1 score by 13.23% and 35.62%, respectively. The proposed structure has good representative ability and our selection strategy can reduce the workload of experts and improve the performance greatly. Thus, the proposed interactive and incremental method has good potential in real applications." @default.
- W3147227983 created "2021-04-13" @default.
- W3147227983 creator A5013194814 @default.
- W3147227983 creator A5021632916 @default.
- W3147227983 creator A5021977927 @default.
- W3147227983 creator A5033102178 @default.
- W3147227983 creator A5049428770 @default.
- W3147227983 creator A5055451322 @default.
- W3147227983 creator A5068216488 @default.
- W3147227983 creator A5073072532 @default.
- W3147227983 date "2021-01-01" @default.
- W3147227983 modified "2023-09-26" @default.
- W3147227983 title "A Novel Incremental and Interactive Method for Actual Heartbeat Classification With Limited Additional Labeled Samples" @default.
- W3147227983 cites W1677182931 @default.
- W3147227983 cites W1988183757 @default.
- W3147227983 cites W2025492635 @default.
- W3147227983 cites W2060768609 @default.
- W3147227983 cites W2063923412 @default.
- W3147227983 cites W2091076299 @default.
- W3147227983 cites W2095409369 @default.
- W3147227983 cites W2103308415 @default.
- W3147227983 cites W2107878631 @default.
- W3147227983 cites W2114842946 @default.
- W3147227983 cites W2133876672 @default.
- W3147227983 cites W2143503258 @default.
- W3147227983 cites W2162273778 @default.
- W3147227983 cites W2194775991 @default.
- W3147227983 cites W2289846183 @default.
- W3147227983 cites W2482102801 @default.
- W3147227983 cites W2507148354 @default.
- W3147227983 cites W2516778685 @default.
- W3147227983 cites W2568858846 @default.
- W3147227983 cites W2794557162 @default.
- W3147227983 cites W2795340004 @default.
- W3147227983 cites W2802900481 @default.
- W3147227983 cites W2805227459 @default.
- W3147227983 cites W2810123878 @default.
- W3147227983 cites W2888491225 @default.
- W3147227983 cites W2891342985 @default.
- W3147227983 cites W2892702025 @default.
- W3147227983 cites W2902662000 @default.
- W3147227983 cites W2905877654 @default.
- W3147227983 cites W2908591466 @default.
- W3147227983 cites W2916066245 @default.
- W3147227983 cites W2942497026 @default.
- W3147227983 cites W2943467239 @default.
- W3147227983 cites W2973489423 @default.
- W3147227983 cites W2984660013 @default.
- W3147227983 cites W2989881315 @default.
- W3147227983 cites W2997578981 @default.
- W3147227983 cites W3000611884 @default.
- W3147227983 cites W3004521821 @default.
- W3147227983 cites W3021010134 @default.
- W3147227983 cites W3035588524 @default.
- W3147227983 cites W3037655156 @default.
- W3147227983 cites W3090982778 @default.
- W3147227983 cites W3101546351 @default.
- W3147227983 cites W3152205189 @default.
- W3147227983 doi "https://doi.org/10.1109/tim.2021.3069021" @default.
- W3147227983 hasPublicationYear "2021" @default.
- W3147227983 type Work @default.
- W3147227983 sameAs 3147227983 @default.
- W3147227983 citedByCount "10" @default.
- W3147227983 countsByYear W31472279832021 @default.
- W3147227983 countsByYear W31472279832022 @default.
- W3147227983 countsByYear W31472279832023 @default.
- W3147227983 crossrefType "journal-article" @default.
- W3147227983 hasAuthorship W3147227983A5013194814 @default.
- W3147227983 hasAuthorship W3147227983A5021632916 @default.
- W3147227983 hasAuthorship W3147227983A5021977927 @default.
- W3147227983 hasAuthorship W3147227983A5033102178 @default.
- W3147227983 hasAuthorship W3147227983A5049428770 @default.
- W3147227983 hasAuthorship W3147227983A5055451322 @default.
- W3147227983 hasAuthorship W3147227983A5068216488 @default.
- W3147227983 hasAuthorship W3147227983A5073072532 @default.
- W3147227983 hasConcept C111919701 @default.
- W3147227983 hasConcept C11413529 @default.
- W3147227983 hasConcept C119857082 @default.
- W3147227983 hasConcept C124101348 @default.
- W3147227983 hasConcept C13852961 @default.
- W3147227983 hasConcept C153180895 @default.
- W3147227983 hasConcept C154945302 @default.
- W3147227983 hasConcept C155512373 @default.
- W3147227983 hasConcept C177264268 @default.
- W3147227983 hasConcept C199360897 @default.
- W3147227983 hasConcept C2524010 @default.
- W3147227983 hasConcept C2777210771 @default.
- W3147227983 hasConcept C2778476105 @default.
- W3147227983 hasConcept C33923547 @default.
- W3147227983 hasConcept C38652104 @default.
- W3147227983 hasConcept C41008148 @default.
- W3147227983 hasConcept C45347329 @default.
- W3147227983 hasConcept C50644808 @default.
- W3147227983 hasConcept C81363708 @default.
- W3147227983 hasConceptScore W3147227983C111919701 @default.
- W3147227983 hasConceptScore W3147227983C11413529 @default.
- W3147227983 hasConceptScore W3147227983C119857082 @default.
- W3147227983 hasConceptScore W3147227983C124101348 @default.