Matches in SemOpenAlex for { <https://semopenalex.org/work/W3147280735> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3147280735 endingPage "498" @default.
- W3147280735 startingPage "481" @default.
- W3147280735 abstract "Abstract This paper is concerned mainly with that application of counter-rotating propellers referred to as “ dual-rotation ” propellers. This term is here defined to apply to a pair of oppositely-rotating propellers operating in close tandem, mounted on concentric shafts. Only the application to aeroplanes is discussed herein, for the application of these principles to helicopter design is considered another subject. This paper presents a summary of the development and background of dual-rotation propellers and the benefits that can be derived from their use. Complete references are furnished for designers, no attempt being made to reproduce the somewhat involved theory and lengthy reference data. A short history of the three applications of counter-rotating propellers is presented. The applications include multi-motored aeroplanes with oppositely-rotating propellers, aeroplanes with engines mounted in tandem (back to back) so that the propellers revolve in opposite directions, but primarily, aeroplanes with dual-rotation propeller installations. Most present-day aeroplanes with maximum velocities of 350 m.p.h. and over have single-rotation propellers. At this velocity the single propeller is operating past the peak of its efficiency. The loss in efficiency increases rapidly with increasing forward velocity. Dual-rotation propellers offer an excellent means of maintaining peak propeller efficiencies up to aeroplane velocities of about 450 m.p.h. by absorbing the rotational energy losses in the propeller slipstream. At velocities above 450 m.p.h. up to the limiting velocity there will be only a small reduction from the peak in dual-rotation propeller efficiencies. Sustained level flight aeroplane velocities appear to be limited to about 550 m.p.h. when propellers are used as the means of propulsion. The efficiency of a conventional single-rotation propeller will be so low, however, that this limiting velocity can be approached with such a propeller only at a prohibitive cost in engine horse-power. Any given velocity above 300 m.p.h. can be obtained with less horse-power if dual-rotation propellers are used to replace a single-rotation propeller with the same total number of blades. The percentage gain in performance will increase with increasing forward velocity when dual-rotation propellers are used. It is possible that single-rotation propellers with more than four blades will never be commonly used. Instead, dual-rotation propellers with a total of four, six or perhaps even eight blades, will be used in the next decade on many high performance aeroplanes, especially those operating at high altitudes. The types of aeroplanes will include small single-seater racers and fighters and high performance, long range bombers and transports, particularly those with supercharged cabins. The discussion brings forth the fact that there are few experimental data available in this country to allow a quantitative engineering evaluation to be made of the worth of dual-rotation propellers. Sufficient substantiated theory exists, however, to permit the general statements made above. An outline of the experimental tests that are required to check the theory is presented. Following the discussion of tests made by the U.S. Air Corps on a pursuit type aeroplane equipped with a dual-rotation propeller system, comments are made on the relative advantages and disadvantages of dual and single-rotation propellers as they affect aeroplane design. Hub design problems associated with dual-rotation propellers are discussed. Because of the increasing importance of dual-rotation propellers, additional pertinent references other than those used in this paper are presented in the Appendix." @default.
- W3147280735 created "2021-04-13" @default.
- W3147280735 creator A5068212942 @default.
- W3147280735 date "1940-06-01" @default.
- W3147280735 modified "2023-10-17" @default.
- W3147280735 title "Counter-Rotating Propellers" @default.
- W3147280735 cites W1513836169 @default.
- W3147280735 cites W2496913409 @default.
- W3147280735 cites W817288775 @default.
- W3147280735 doi "https://doi.org/10.1017/s0368393100103128" @default.
- W3147280735 hasPublicationYear "1940" @default.
- W3147280735 type Work @default.
- W3147280735 sameAs 3147280735 @default.
- W3147280735 citedByCount "2" @default.
- W3147280735 countsByYear W31472807352017 @default.
- W3147280735 countsByYear W31472807352022 @default.
- W3147280735 crossrefType "journal-article" @default.
- W3147280735 hasAuthorship W3147280735A5068212942 @default.
- W3147280735 hasConcept C10159599 @default.
- W3147280735 hasConcept C121332964 @default.
- W3147280735 hasConcept C127413603 @default.
- W3147280735 hasConcept C138885662 @default.
- W3147280735 hasConcept C146978453 @default.
- W3147280735 hasConcept C154945302 @default.
- W3147280735 hasConcept C188198153 @default.
- W3147280735 hasConcept C199104240 @default.
- W3147280735 hasConcept C2778449969 @default.
- W3147280735 hasConcept C2780980858 @default.
- W3147280735 hasConcept C3019953569 @default.
- W3147280735 hasConcept C41008148 @default.
- W3147280735 hasConcept C41895202 @default.
- W3147280735 hasConcept C5594486 @default.
- W3147280735 hasConcept C57879066 @default.
- W3147280735 hasConcept C65352953 @default.
- W3147280735 hasConcept C74050887 @default.
- W3147280735 hasConcept C74650414 @default.
- W3147280735 hasConcept C78519656 @default.
- W3147280735 hasConcept C80055088 @default.
- W3147280735 hasConcept C81063470 @default.
- W3147280735 hasConcept C97683284 @default.
- W3147280735 hasConceptScore W3147280735C10159599 @default.
- W3147280735 hasConceptScore W3147280735C121332964 @default.
- W3147280735 hasConceptScore W3147280735C127413603 @default.
- W3147280735 hasConceptScore W3147280735C138885662 @default.
- W3147280735 hasConceptScore W3147280735C146978453 @default.
- W3147280735 hasConceptScore W3147280735C154945302 @default.
- W3147280735 hasConceptScore W3147280735C188198153 @default.
- W3147280735 hasConceptScore W3147280735C199104240 @default.
- W3147280735 hasConceptScore W3147280735C2778449969 @default.
- W3147280735 hasConceptScore W3147280735C2780980858 @default.
- W3147280735 hasConceptScore W3147280735C3019953569 @default.
- W3147280735 hasConceptScore W3147280735C41008148 @default.
- W3147280735 hasConceptScore W3147280735C41895202 @default.
- W3147280735 hasConceptScore W3147280735C5594486 @default.
- W3147280735 hasConceptScore W3147280735C57879066 @default.
- W3147280735 hasConceptScore W3147280735C65352953 @default.
- W3147280735 hasConceptScore W3147280735C74050887 @default.
- W3147280735 hasConceptScore W3147280735C74650414 @default.
- W3147280735 hasConceptScore W3147280735C78519656 @default.
- W3147280735 hasConceptScore W3147280735C80055088 @default.
- W3147280735 hasConceptScore W3147280735C81063470 @default.
- W3147280735 hasConceptScore W3147280735C97683284 @default.
- W3147280735 hasIssue "354" @default.
- W3147280735 hasLocation W31472807351 @default.
- W3147280735 hasOpenAccess W3147280735 @default.
- W3147280735 hasPrimaryLocation W31472807351 @default.
- W3147280735 hasRelatedWork W111008426 @default.
- W3147280735 hasRelatedWork W2054615767 @default.
- W3147280735 hasRelatedWork W2391042040 @default.
- W3147280735 hasRelatedWork W242088547 @default.
- W3147280735 hasRelatedWork W2979605697 @default.
- W3147280735 hasRelatedWork W3124397139 @default.
- W3147280735 hasRelatedWork W3141486979 @default.
- W3147280735 hasRelatedWork W3147280735 @default.
- W3147280735 hasRelatedWork W3196211252 @default.
- W3147280735 hasRelatedWork W4293565951 @default.
- W3147280735 hasVolume "44" @default.
- W3147280735 isParatext "false" @default.
- W3147280735 isRetracted "false" @default.
- W3147280735 magId "3147280735" @default.
- W3147280735 workType "article" @default.