Matches in SemOpenAlex for { <https://semopenalex.org/work/W3147302172> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3147302172 endingPage "16" @default.
- W3147302172 startingPage "1" @default.
- W3147302172 abstract "Finite Element Analysis (FEA) has been widely used to generate simulations of complex nonlinear systems. Despite its strength and accuracy, FEA usually has two limitations: (i) running high-fidelity FEA often requires high computational cost and consumes a large amount of time; (ii) FEA is a deterministic method that is insufficient for uncertainty quantification when modeling complex systems with various types of uncertainties. In this article, a physics-informed data-driven surrogate model, named Neural Process Aided Ordinary Differential Equation (NP-ODE), is proposed to model the FEA simulations and capture both input and output uncertainties. To validate the advantages of the proposed NP-ODE, we conduct experiments on both the simulation data generated from a given ordinary differential equation and the data collected from a real FEA platform for tribocorrosion. The results show that the proposed NP-ODE outperforms benchmark methods. The NP-ODE method realizes the smallest predictive error as well as generating the most reasonable confidence intervals with the best coverage on testing data points. Appendices, code, and data are available in the supplementary files." @default.
- W3147302172 created "2021-04-13" @default.
- W3147302172 creator A5012268558 @default.
- W3147302172 creator A5018763939 @default.
- W3147302172 creator A5060390157 @default.
- W3147302172 creator A5068949602 @default.
- W3147302172 date "2021-04-02" @default.
- W3147302172 modified "2023-09-26" @default.
- W3147302172 title "NP-ODE: Neural process aided ordinary differential equations for uncertainty quantification of finite element analysis" @default.
- W3147302172 cites W134272123 @default.
- W3147302172 cites W1978220626 @default.
- W3147302172 cites W2048711666 @default.
- W3147302172 cites W2163286960 @default.
- W3147302172 cites W2164607606 @default.
- W3147302172 cites W2732319205 @default.
- W3147302172 cites W2768445841 @default.
- W3147302172 cites W2785071288 @default.
- W3147302172 cites W2890818887 @default.
- W3147302172 cites W2961523456 @default.
- W3147302172 cites W3000508506 @default.
- W3147302172 cites W3003311382 @default.
- W3147302172 cites W3029388122 @default.
- W3147302172 cites W3095412187 @default.
- W3147302172 cites W4247080625 @default.
- W3147302172 doi "https://doi.org/10.1080/24725854.2021.1891485" @default.
- W3147302172 hasPublicationYear "2021" @default.
- W3147302172 type Work @default.
- W3147302172 sameAs 3147302172 @default.
- W3147302172 citedByCount "1" @default.
- W3147302172 countsByYear W31473021722023 @default.
- W3147302172 crossrefType "journal-article" @default.
- W3147302172 hasAuthorship W3147302172A5012268558 @default.
- W3147302172 hasAuthorship W3147302172A5018763939 @default.
- W3147302172 hasAuthorship W3147302172A5060390157 @default.
- W3147302172 hasAuthorship W3147302172A5068949602 @default.
- W3147302172 hasBestOaLocation W31473021722 @default.
- W3147302172 hasConcept C111919701 @default.
- W3147302172 hasConcept C11413529 @default.
- W3147302172 hasConcept C126255220 @default.
- W3147302172 hasConcept C127413603 @default.
- W3147302172 hasConcept C13280743 @default.
- W3147302172 hasConcept C134306372 @default.
- W3147302172 hasConcept C135628077 @default.
- W3147302172 hasConcept C185798385 @default.
- W3147302172 hasConcept C205649164 @default.
- W3147302172 hasConcept C28826006 @default.
- W3147302172 hasConcept C33923547 @default.
- W3147302172 hasConcept C34862557 @default.
- W3147302172 hasConcept C41008148 @default.
- W3147302172 hasConcept C51544822 @default.
- W3147302172 hasConcept C66938386 @default.
- W3147302172 hasConcept C78045399 @default.
- W3147302172 hasConcept C98045186 @default.
- W3147302172 hasConceptScore W3147302172C111919701 @default.
- W3147302172 hasConceptScore W3147302172C11413529 @default.
- W3147302172 hasConceptScore W3147302172C126255220 @default.
- W3147302172 hasConceptScore W3147302172C127413603 @default.
- W3147302172 hasConceptScore W3147302172C13280743 @default.
- W3147302172 hasConceptScore W3147302172C134306372 @default.
- W3147302172 hasConceptScore W3147302172C135628077 @default.
- W3147302172 hasConceptScore W3147302172C185798385 @default.
- W3147302172 hasConceptScore W3147302172C205649164 @default.
- W3147302172 hasConceptScore W3147302172C28826006 @default.
- W3147302172 hasConceptScore W3147302172C33923547 @default.
- W3147302172 hasConceptScore W3147302172C34862557 @default.
- W3147302172 hasConceptScore W3147302172C41008148 @default.
- W3147302172 hasConceptScore W3147302172C51544822 @default.
- W3147302172 hasConceptScore W3147302172C66938386 @default.
- W3147302172 hasConceptScore W3147302172C78045399 @default.
- W3147302172 hasConceptScore W3147302172C98045186 @default.
- W3147302172 hasFunder F4320337391 @default.
- W3147302172 hasLocation W31473021721 @default.
- W3147302172 hasLocation W31473021722 @default.
- W3147302172 hasOpenAccess W3147302172 @default.
- W3147302172 hasPrimaryLocation W31473021721 @default.
- W3147302172 hasRelatedWork W1750424384 @default.
- W3147302172 hasRelatedWork W2048795484 @default.
- W3147302172 hasRelatedWork W2090142805 @default.
- W3147302172 hasRelatedWork W2263887205 @default.
- W3147302172 hasRelatedWork W2589586168 @default.
- W3147302172 hasRelatedWork W2950301484 @default.
- W3147302172 hasRelatedWork W3102283898 @default.
- W3147302172 hasRelatedWork W3161724164 @default.
- W3147302172 hasRelatedWork W4302422245 @default.
- W3147302172 hasRelatedWork W4313271046 @default.
- W3147302172 isParatext "false" @default.
- W3147302172 isRetracted "false" @default.
- W3147302172 magId "3147302172" @default.
- W3147302172 workType "article" @default.