Matches in SemOpenAlex for { <https://semopenalex.org/work/W3147336112> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3147336112 endingPage "17" @default.
- W3147336112 startingPage "11" @default.
- W3147336112 abstract "We examined whether artificial intelligence (AI) used with the novel digital image enhancement system modalities (CLARA+CHROMA, SPECTRA A, and SPECTRA B) could distinguish the cholesteatoma matrix, cholesteatoma debris, and normal middle ear mucosa, and observe the middle ear cavity during middle ear cholesteatoma surgery.A convolutional neural network (CNN) was trained with a set of images chosen by an otologist. To evaluate the diagnostic accuracy of the constructed CNN, an independent test data set of middle ear images was collected from 14 consecutive patients with 26 cholesteatoma matrix lesions, who underwent transcanal endoscopic ear surgery at a single hospital from August 2018 to September 2019. The final test data set included 58 total images, with 1‒5 images from each modality for each case.The CNN required only 10 s to analyze more than 58 test images. Using SPECTRA A and SPECTRA B, the CNN correctly diagnosed 15 and 15 of 26 cholesteatoma matrix lesions, with a sensitivity of 34.6% and 42.3%, and with a specificity of 81.3% and 87.5%, respectively.Our preliminary study revealed that AI and novel imaging modalities are potentially useful tools for identifying and visualizing the cholesteatoma matrix during endoscopic ear surgery. The diagnostic ability of the CNN is not yet appropriate for implementation in daily clinical practice, based on our study findings. However, in the future, these techniques and AI tools could help to reduce the burden on surgeons and will facilitate telemedicine in remote and rural areas, as well as in developing countries where the number of surgeons is limited." @default.
- W3147336112 created "2021-04-13" @default.
- W3147336112 creator A5030958045 @default.
- W3147336112 creator A5040067120 @default.
- W3147336112 creator A5050750222 @default.
- W3147336112 creator A5072213122 @default.
- W3147336112 creator A5074363425 @default.
- W3147336112 creator A5075818840 @default.
- W3147336112 creator A5078618329 @default.
- W3147336112 creator A5081703435 @default.
- W3147336112 date "2022-02-01" @default.
- W3147336112 modified "2023-10-17" @default.
- W3147336112 title "Application of artificial intelligence using a convolutional neural network for detecting cholesteatoma in endoscopic enhanced images" @default.
- W3147336112 cites W1968754317 @default.
- W3147336112 cites W1991633928 @default.
- W3147336112 cites W2014570521 @default.
- W3147336112 cites W2402601207 @default.
- W3147336112 cites W2494538201 @default.
- W3147336112 cites W2557738935 @default.
- W3147336112 cites W2581082771 @default.
- W3147336112 cites W2593790801 @default.
- W3147336112 cites W2759916706 @default.
- W3147336112 cites W2762805099 @default.
- W3147336112 cites W2765800380 @default.
- W3147336112 cites W2783201053 @default.
- W3147336112 cites W2944133614 @default.
- W3147336112 cites W3105195945 @default.
- W3147336112 doi "https://doi.org/10.1016/j.anl.2021.03.018" @default.
- W3147336112 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33824034" @default.
- W3147336112 hasPublicationYear "2022" @default.
- W3147336112 type Work @default.
- W3147336112 sameAs 3147336112 @default.
- W3147336112 citedByCount "9" @default.
- W3147336112 countsByYear W31473361122021 @default.
- W3147336112 countsByYear W31473361122023 @default.
- W3147336112 crossrefType "journal-article" @default.
- W3147336112 hasAuthorship W3147336112A5030958045 @default.
- W3147336112 hasAuthorship W3147336112A5040067120 @default.
- W3147336112 hasAuthorship W3147336112A5050750222 @default.
- W3147336112 hasAuthorship W3147336112A5072213122 @default.
- W3147336112 hasAuthorship W3147336112A5074363425 @default.
- W3147336112 hasAuthorship W3147336112A5075818840 @default.
- W3147336112 hasAuthorship W3147336112A5078618329 @default.
- W3147336112 hasAuthorship W3147336112A5081703435 @default.
- W3147336112 hasConcept C126838900 @default.
- W3147336112 hasConcept C154945302 @default.
- W3147336112 hasConcept C2777846895 @default.
- W3147336112 hasConcept C2780725665 @default.
- W3147336112 hasConcept C41008148 @default.
- W3147336112 hasConcept C71924100 @default.
- W3147336112 hasConcept C81363708 @default.
- W3147336112 hasConceptScore W3147336112C126838900 @default.
- W3147336112 hasConceptScore W3147336112C154945302 @default.
- W3147336112 hasConceptScore W3147336112C2777846895 @default.
- W3147336112 hasConceptScore W3147336112C2780725665 @default.
- W3147336112 hasConceptScore W3147336112C41008148 @default.
- W3147336112 hasConceptScore W3147336112C71924100 @default.
- W3147336112 hasConceptScore W3147336112C81363708 @default.
- W3147336112 hasIssue "1" @default.
- W3147336112 hasLocation W31473361121 @default.
- W3147336112 hasLocation W31473361122 @default.
- W3147336112 hasOpenAccess W3147336112 @default.
- W3147336112 hasPrimaryLocation W31473361121 @default.
- W3147336112 hasRelatedWork W2008134971 @default.
- W3147336112 hasRelatedWork W2362405397 @default.
- W3147336112 hasRelatedWork W2380816057 @default.
- W3147336112 hasRelatedWork W2389392884 @default.
- W3147336112 hasRelatedWork W2411219936 @default.
- W3147336112 hasRelatedWork W2414669601 @default.
- W3147336112 hasRelatedWork W2417821361 @default.
- W3147336112 hasRelatedWork W2438900375 @default.
- W3147336112 hasRelatedWork W2810802434 @default.
- W3147336112 hasRelatedWork W2981799983 @default.
- W3147336112 hasVolume "49" @default.
- W3147336112 isParatext "false" @default.
- W3147336112 isRetracted "false" @default.
- W3147336112 magId "3147336112" @default.
- W3147336112 workType "article" @default.