Matches in SemOpenAlex for { <https://semopenalex.org/work/W3147450857> ?p ?o ?g. }
- W3147450857 abstract "Computer-aided diagnosis has become a necessity for accurate and immediate coronavirus disease 2019 (COVID-19) detection to aid treatment and prevent the spread of the virus. Numerous studies have proposed to use Deep Learning techniques for COVID-19 diagnosis. However, they have used very limited chest X-ray (CXR) image repositories for evaluation with a small number, a few hundreds, of COVID-19 samples. Moreover, these methods can neither localize nor grade the severity of COVID-19 infection. For this purpose, recent studies proposed to explore the activation maps of deep networks. However, they remain inaccurate for localizing the actual infestation making them unreliable for clinical use. This study proposes a novel method for the joint localization, severity grading, and detection of COVID-19 from CXR images by generating the so-called infection maps. To accomplish this, we have compiled the largest dataset with 119,316 CXR images including 2951 COVID-19 samples, where the annotation of the ground-truth segmentation masks is performed on CXRs by a novel collaborative human-machine approach. Furthermore, we publicly release the first CXR dataset with the ground-truth segmentation masks of the COVID-19 infected regions. A detailed set of experiments show that state-of-the-art segmentation networks can learn to localize COVID-19 infection with an F1-score of 83.20%, which is significantly superior to the activation maps created by the previous methods. Finally, the proposed approach achieved a COVID-19 detection performance with 94.96% sensitivity and 99.88% specificity." @default.
- W3147450857 created "2021-04-13" @default.
- W3147450857 creator A5006043313 @default.
- W3147450857 creator A5007583477 @default.
- W3147450857 creator A5026778808 @default.
- W3147450857 creator A5040188609 @default.
- W3147450857 creator A5046067674 @default.
- W3147450857 creator A5047979812 @default.
- W3147450857 creator A5055831487 @default.
- W3147450857 creator A5057088639 @default.
- W3147450857 creator A5088225634 @default.
- W3147450857 date "2021-04-01" @default.
- W3147450857 modified "2023-10-09" @default.
- W3147450857 title "COVID-19 infection map generation and detection from chest X-ray images" @default.
- W3147450857 cites W1901129140 @default.
- W3147450857 cites W1904878066 @default.
- W3147450857 cites W2152772232 @default.
- W3147450857 cites W2171697262 @default.
- W3147450857 cites W2183341477 @default.
- W3147450857 cites W2194775991 @default.
- W3147450857 cites W2788633781 @default.
- W3147450857 cites W2884436604 @default.
- W3147450857 cites W2912664121 @default.
- W3147450857 cites W2962858109 @default.
- W3147450857 cites W2962914239 @default.
- W3147450857 cites W2963323244 @default.
- W3147450857 cites W2963351448 @default.
- W3147450857 cites W2963446712 @default.
- W3147450857 cites W3006882119 @default.
- W3147450857 cites W3007497549 @default.
- W3147450857 cites W3007568630 @default.
- W3147450857 cites W3008985036 @default.
- W3147450857 cites W3010223921 @default.
- W3147450857 cites W3010278110 @default.
- W3147450857 cites W3010699833 @default.
- W3147450857 cites W3010702679 @default.
- W3147450857 cites W3012211282 @default.
- W3147450857 cites W3012310845 @default.
- W3147450857 cites W3013277995 @default.
- W3147450857 cites W3013601031 @default.
- W3147450857 cites W3013640245 @default.
- W3147450857 cites W3014385845 @default.
- W3147450857 cites W3014561994 @default.
- W3147450857 cites W3016266726 @default.
- W3147450857 cites W3016610966 @default.
- W3147450857 cites W3017855299 @default.
- W3147450857 cites W3020653337 @default.
- W3147450857 cites W3023402713 @default.
- W3147450857 cites W3037666819 @default.
- W3147450857 cites W3083161015 @default.
- W3147450857 cites W3083360997 @default.
- W3147450857 cites W3086039674 @default.
- W3147450857 cites W3089168916 @default.
- W3147450857 cites W3089854338 @default.
- W3147450857 cites W3101156210 @default.
- W3147450857 cites W3101633406 @default.
- W3147450857 cites W3104810384 @default.
- W3147450857 cites W3105081694 @default.
- W3147450857 cites W3107529852 @default.
- W3147450857 cites W3107979957 @default.
- W3147450857 cites W3129576291 @default.
- W3147450857 cites W3155171916 @default.
- W3147450857 cites W3162351260 @default.
- W3147450857 cites W3164076340 @default.
- W3147450857 cites W3176628328 @default.
- W3147450857 cites W4230649743 @default.
- W3147450857 cites W4247903017 @default.
- W3147450857 cites W4313291495 @default.
- W3147450857 doi "https://doi.org/10.1007/s13755-021-00146-8" @default.
- W3147450857 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8015934" @default.
- W3147450857 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33824721" @default.
- W3147450857 hasPublicationYear "2021" @default.
- W3147450857 type Work @default.
- W3147450857 sameAs 3147450857 @default.
- W3147450857 citedByCount "61" @default.
- W3147450857 countsByYear W31474508572020 @default.
- W3147450857 countsByYear W31474508572021 @default.
- W3147450857 countsByYear W31474508572022 @default.
- W3147450857 countsByYear W31474508572023 @default.
- W3147450857 crossrefType "journal-article" @default.
- W3147450857 hasAuthorship W3147450857A5006043313 @default.
- W3147450857 hasAuthorship W3147450857A5007583477 @default.
- W3147450857 hasAuthorship W3147450857A5026778808 @default.
- W3147450857 hasAuthorship W3147450857A5040188609 @default.
- W3147450857 hasAuthorship W3147450857A5046067674 @default.
- W3147450857 hasAuthorship W3147450857A5047979812 @default.
- W3147450857 hasAuthorship W3147450857A5055831487 @default.
- W3147450857 hasAuthorship W3147450857A5057088639 @default.
- W3147450857 hasAuthorship W3147450857A5088225634 @default.
- W3147450857 hasBestOaLocation W31474508571 @default.
- W3147450857 hasConcept C108583219 @default.
- W3147450857 hasConcept C142724271 @default.
- W3147450857 hasConcept C146849305 @default.
- W3147450857 hasConcept C153180895 @default.
- W3147450857 hasConcept C154945302 @default.
- W3147450857 hasConcept C18903297 @default.
- W3147450857 hasConcept C2777286243 @default.
- W3147450857 hasConcept C2779134260 @default.
- W3147450857 hasConcept C3007834351 @default.
- W3147450857 hasConcept C3008058167 @default.