Matches in SemOpenAlex for { <https://semopenalex.org/work/W3147474464> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3147474464 endingPage "46128" @default.
- W3147474464 startingPage "46117" @default.
- W3147474464 abstract "The generation volatility of photovoltaics (PVs) has created several control and operation challenges for grid operators. For a secure and reliable day or hour-ahead electricity dispatch, the grid operators need the visibility of their synchronous and asynchronous generators' capacity. It helps them to manage the spinning reserve, inertia and frequency response during any contingency events. This study attempts to provide a machine learning-based PV power generation forecasting for both the short and long-term. The study has chosen Alice Springs, one of the geographically solar energy-rich areas in Australia, and considered various environmental parameters. Different machine learning algorithms, including Linear Regression, Polynomial Regression, Decision Tree Regression, Support Vector Regression, Random Forest Regression, Long Short-Term Memory, and Multilayer Perceptron Regression, are considered in the study. Various comparative performance analysis is conducted for both normal and uncertain cases and found that Random Forest Regression performed better for our dataset. The impact of data normalization on forecasting performance is also analyzed using multiple performance metrics. The study may help the grid operators to choose an appropriate PV power forecasting algorithm and plan the time-ahead generation volatility." @default.
- W3147474464 created "2021-04-13" @default.
- W3147474464 creator A5004069000 @default.
- W3147474464 creator A5010244781 @default.
- W3147474464 creator A5012029027 @default.
- W3147474464 creator A5020105069 @default.
- W3147474464 creator A5062716310 @default.
- W3147474464 creator A5070411906 @default.
- W3147474464 date "2021-01-01" @default.
- W3147474464 modified "2023-10-11" @default.
- W3147474464 title "Machine Learning Based PV Power Generation Forecasting in Alice Springs" @default.
- W3147474464 cites W2036778492 @default.
- W3147474464 cites W2110745155 @default.
- W3147474464 cites W2338247605 @default.
- W3147474464 cites W2463802320 @default.
- W3147474464 cites W2751698537 @default.
- W3147474464 cites W2766659793 @default.
- W3147474464 cites W2773629498 @default.
- W3147474464 cites W2792326773 @default.
- W3147474464 cites W2889323772 @default.
- W3147474464 cites W2892841407 @default.
- W3147474464 cites W2906432502 @default.
- W3147474464 cites W2912623183 @default.
- W3147474464 cites W2917491574 @default.
- W3147474464 cites W2924503387 @default.
- W3147474464 cites W2945722695 @default.
- W3147474464 cites W2953038294 @default.
- W3147474464 cites W2963322289 @default.
- W3147474464 cites W2973131789 @default.
- W3147474464 cites W2980047420 @default.
- W3147474464 cites W2991305957 @default.
- W3147474464 cites W3005138897 @default.
- W3147474464 cites W3009377873 @default.
- W3147474464 cites W3045974111 @default.
- W3147474464 doi "https://doi.org/10.1109/access.2021.3066494" @default.
- W3147474464 hasPublicationYear "2021" @default.
- W3147474464 type Work @default.
- W3147474464 sameAs 3147474464 @default.
- W3147474464 citedByCount "44" @default.
- W3147474464 countsByYear W31474744642021 @default.
- W3147474464 countsByYear W31474744642022 @default.
- W3147474464 countsByYear W31474744642023 @default.
- W3147474464 crossrefType "journal-article" @default.
- W3147474464 hasAuthorship W3147474464A5004069000 @default.
- W3147474464 hasAuthorship W3147474464A5010244781 @default.
- W3147474464 hasAuthorship W3147474464A5012029027 @default.
- W3147474464 hasAuthorship W3147474464A5020105069 @default.
- W3147474464 hasAuthorship W3147474464A5062716310 @default.
- W3147474464 hasAuthorship W3147474464A5070411906 @default.
- W3147474464 hasBestOaLocation W31474744641 @default.
- W3147474464 hasConcept C105795698 @default.
- W3147474464 hasConcept C119857082 @default.
- W3147474464 hasConcept C154945302 @default.
- W3147474464 hasConcept C169258074 @default.
- W3147474464 hasConcept C33923547 @default.
- W3147474464 hasConcept C41008148 @default.
- W3147474464 hasConcept C45942800 @default.
- W3147474464 hasConcept C83546350 @default.
- W3147474464 hasConcept C84525736 @default.
- W3147474464 hasConceptScore W3147474464C105795698 @default.
- W3147474464 hasConceptScore W3147474464C119857082 @default.
- W3147474464 hasConceptScore W3147474464C154945302 @default.
- W3147474464 hasConceptScore W3147474464C169258074 @default.
- W3147474464 hasConceptScore W3147474464C33923547 @default.
- W3147474464 hasConceptScore W3147474464C41008148 @default.
- W3147474464 hasConceptScore W3147474464C45942800 @default.
- W3147474464 hasConceptScore W3147474464C83546350 @default.
- W3147474464 hasConceptScore W3147474464C84525736 @default.
- W3147474464 hasLocation W31474744641 @default.
- W3147474464 hasOpenAccess W3147474464 @default.
- W3147474464 hasPrimaryLocation W31474744641 @default.
- W3147474464 hasRelatedWork W2188759683 @default.
- W3147474464 hasRelatedWork W3170784702 @default.
- W3147474464 hasRelatedWork W3210877509 @default.
- W3147474464 hasRelatedWork W4200196661 @default.
- W3147474464 hasRelatedWork W4205478082 @default.
- W3147474464 hasRelatedWork W4283016678 @default.
- W3147474464 hasRelatedWork W4293069612 @default.
- W3147474464 hasRelatedWork W4316082230 @default.
- W3147474464 hasRelatedWork W4316087365 @default.
- W3147474464 hasRelatedWork W4318350883 @default.
- W3147474464 hasVolume "9" @default.
- W3147474464 isParatext "false" @default.
- W3147474464 isRetracted "false" @default.
- W3147474464 magId "3147474464" @default.
- W3147474464 workType "article" @default.