Matches in SemOpenAlex for { <https://semopenalex.org/work/W3147478190> ?p ?o ?g. }
- W3147478190 endingPage "104098" @default.
- W3147478190 startingPage "104098" @default.
- W3147478190 abstract "In geotechnical or geological engineering, geo-data interpolation based on measurements is often needed for engineering design and analysis. However, measurements are sometimes extremely sparse (e.g., several, or even just a few, data points) because of limited access to the subsurface and the cost of tests. It is, therefore, difficult to properly interpolate the measurements. On the other hand, multiple data sources (e.g., standard penetration tests, SPT, and cone penetration tests, CPT) often exist in engineering practice, and data fusion methods (e.g., cokriging) have been developed to leverage the correlation among multiple data sources for interpolation of sparse geo-data. Performance of cokriging depends on proper modeling of spatial variability using variogram models. However, the construction of proper variogram models requires many measurement data points. Therefore, it is very challenging to properly interpolate extremely sparse geo-data due to the difficulty in obtaining suitable variogram models. In this study, a novel data fusion method, called collaborative Bayesian compressive sampling (Co-BCS), is proposed to tackle this problem. Equations of the proposed Co-BCS method are derived, and the method is illustrated using real data. The results show that the proposed method not only properly interprets extremely sparse geo-data by integrating correlated secondary data sources but also quantifies the associated interpolation uncertainty simultaneously." @default.
- W3147478190 created "2021-04-13" @default.
- W3147478190 creator A5001995018 @default.
- W3147478190 creator A5070961992 @default.
- W3147478190 creator A5083440714 @default.
- W3147478190 date "2021-06-01" @default.
- W3147478190 modified "2023-10-14" @default.
- W3147478190 title "Interpolation of extremely sparse geo-data by data fusion and collaborative Bayesian compressive sampling" @default.
- W3147478190 cites W1829415568 @default.
- W3147478190 cites W1970620492 @default.
- W3147478190 cites W1976568930 @default.
- W3147478190 cites W1992364977 @default.
- W3147478190 cites W2011452285 @default.
- W3147478190 cites W2023965427 @default.
- W3147478190 cites W2028632562 @default.
- W3147478190 cites W2039149956 @default.
- W3147478190 cites W2046115020 @default.
- W3147478190 cites W2061136435 @default.
- W3147478190 cites W2071284784 @default.
- W3147478190 cites W2071349153 @default.
- W3147478190 cites W2083249110 @default.
- W3147478190 cites W2086653556 @default.
- W3147478190 cites W2109790965 @default.
- W3147478190 cites W2119667497 @default.
- W3147478190 cites W2127271355 @default.
- W3147478190 cites W2144280800 @default.
- W3147478190 cites W2145185680 @default.
- W3147478190 cites W2163942594 @default.
- W3147478190 cites W2164452299 @default.
- W3147478190 cites W2164681875 @default.
- W3147478190 cites W2169330525 @default.
- W3147478190 cites W2169553033 @default.
- W3147478190 cites W2169833510 @default.
- W3147478190 cites W2296609147 @default.
- W3147478190 cites W2410098808 @default.
- W3147478190 cites W2469865257 @default.
- W3147478190 cites W2511885285 @default.
- W3147478190 cites W2559450745 @default.
- W3147478190 cites W2563965658 @default.
- W3147478190 cites W2757557571 @default.
- W3147478190 cites W2761380721 @default.
- W3147478190 cites W2765166320 @default.
- W3147478190 cites W2771386828 @default.
- W3147478190 cites W2776077524 @default.
- W3147478190 cites W2782250652 @default.
- W3147478190 cites W2800105827 @default.
- W3147478190 cites W2800902316 @default.
- W3147478190 cites W3007087136 @default.
- W3147478190 cites W3010845630 @default.
- W3147478190 cites W3016986412 @default.
- W3147478190 cites W3163650977 @default.
- W3147478190 cites W4250955649 @default.
- W3147478190 doi "https://doi.org/10.1016/j.compgeo.2021.104098" @default.
- W3147478190 hasPublicationYear "2021" @default.
- W3147478190 type Work @default.
- W3147478190 sameAs 3147478190 @default.
- W3147478190 citedByCount "10" @default.
- W3147478190 countsByYear W31474781902021 @default.
- W3147478190 countsByYear W31474781902022 @default.
- W3147478190 countsByYear W31474781902023 @default.
- W3147478190 crossrefType "journal-article" @default.
- W3147478190 hasAuthorship W3147478190A5001995018 @default.
- W3147478190 hasAuthorship W3147478190A5070961992 @default.
- W3147478190 hasAuthorship W3147478190A5083440714 @default.
- W3147478190 hasConcept C104114177 @default.
- W3147478190 hasConcept C106131492 @default.
- W3147478190 hasConcept C107673813 @default.
- W3147478190 hasConcept C11413529 @default.
- W3147478190 hasConcept C119857082 @default.
- W3147478190 hasConcept C121332964 @default.
- W3147478190 hasConcept C124101348 @default.
- W3147478190 hasConcept C124851039 @default.
- W3147478190 hasConcept C137800194 @default.
- W3147478190 hasConcept C140779682 @default.
- W3147478190 hasConcept C153083717 @default.
- W3147478190 hasConcept C154881674 @default.
- W3147478190 hasConcept C154945302 @default.
- W3147478190 hasConcept C160234255 @default.
- W3147478190 hasConcept C163716315 @default.
- W3147478190 hasConcept C31972630 @default.
- W3147478190 hasConcept C33954974 @default.
- W3147478190 hasConcept C41008148 @default.
- W3147478190 hasConcept C56372850 @default.
- W3147478190 hasConcept C62520636 @default.
- W3147478190 hasConcept C81692654 @default.
- W3147478190 hasConceptScore W3147478190C104114177 @default.
- W3147478190 hasConceptScore W3147478190C106131492 @default.
- W3147478190 hasConceptScore W3147478190C107673813 @default.
- W3147478190 hasConceptScore W3147478190C11413529 @default.
- W3147478190 hasConceptScore W3147478190C119857082 @default.
- W3147478190 hasConceptScore W3147478190C121332964 @default.
- W3147478190 hasConceptScore W3147478190C124101348 @default.
- W3147478190 hasConceptScore W3147478190C124851039 @default.
- W3147478190 hasConceptScore W3147478190C137800194 @default.
- W3147478190 hasConceptScore W3147478190C140779682 @default.
- W3147478190 hasConceptScore W3147478190C153083717 @default.
- W3147478190 hasConceptScore W3147478190C154881674 @default.
- W3147478190 hasConceptScore W3147478190C154945302 @default.