Matches in SemOpenAlex for { <https://semopenalex.org/work/W3147639821> ?p ?o ?g. }
- W3147639821 endingPage "5199" @default.
- W3147639821 startingPage "5190" @default.
- W3147639821 abstract "Energy consumption is an important issue for resource-constrained wireless neural recording applications with limited data bandwidth. Compressed sensing (CS) is a promising framework for addressing this challenge because it can compress data in an energy-efficient way. Recent work has shown that deep neural networks (DNNs) can serve as valuable models for CS of neural action potentials (APs). However, these models typically require impractically large datasets and computational resources for training, and they do not easily generalize to novel circumstances. Here, we propose a new CS framework, termed APGen, for the reconstruction of APs in a training-free manner. It consists of a deep generative network and an analysis sparse regularizer. We validate our method on two in vivo datasets. Even without any training, APGen outperformed model-based and data-driven methods in terms of reconstruction accuracy, computational efficiency, and robustness to AP overlap and misalignment. The computational efficiency of APGen and its ability to perform without training make it an ideal candidate for long-term, resource-constrained, and large-scale wireless neural recording. It may also promote the development of real-time, naturalistic brain–computer interfaces." @default.
- W3147639821 created "2021-04-13" @default.
- W3147639821 creator A5009535551 @default.
- W3147639821 creator A5057898837 @default.
- W3147639821 creator A5084878606 @default.
- W3147639821 creator A5088197463 @default.
- W3147639821 date "2022-10-01" @default.
- W3147639821 modified "2023-10-10" @default.
- W3147639821 title "Training-Free Deep Generative Networks for Compressed Sensing of Neural Action Potentials" @default.
- W3147639821 cites W1536734932 @default.
- W3147639821 cites W1964943109 @default.
- W3147639821 cites W1991564249 @default.
- W3147639821 cites W2005089986 @default.
- W3147639821 cites W2009664245 @default.
- W3147639821 cites W2016123757 @default.
- W3147639821 cites W2018255768 @default.
- W3147639821 cites W2028087285 @default.
- W3147639821 cites W2032712527 @default.
- W3147639821 cites W2050293473 @default.
- W3147639821 cites W2056370875 @default.
- W3147639821 cites W2064030771 @default.
- W3147639821 cites W2066796814 @default.
- W3147639821 cites W2083381517 @default.
- W3147639821 cites W2087185095 @default.
- W3147639821 cites W2091638560 @default.
- W3147639821 cites W2100495367 @default.
- W3147639821 cites W2129638195 @default.
- W3147639821 cites W2132680427 @default.
- W3147639821 cites W2134996791 @default.
- W3147639821 cites W2136104104 @default.
- W3147639821 cites W2146842127 @default.
- W3147639821 cites W2155114066 @default.
- W3147639821 cites W2160547390 @default.
- W3147639821 cites W2162409952 @default.
- W3147639821 cites W2194775991 @default.
- W3147639821 cites W2324710460 @default.
- W3147639821 cites W2330214351 @default.
- W3147639821 cites W2534320940 @default.
- W3147639821 cites W2580414508 @default.
- W3147639821 cites W2581217545 @default.
- W3147639821 cites W2594107175 @default.
- W3147639821 cites W2605956430 @default.
- W3147639821 cites W2607299631 @default.
- W3147639821 cites W2746433858 @default.
- W3147639821 cites W2767493192 @default.
- W3147639821 cites W2783864879 @default.
- W3147639821 cites W2906384144 @default.
- W3147639821 cites W2962957039 @default.
- W3147639821 cites W2963420272 @default.
- W3147639821 cites W2964013315 @default.
- W3147639821 cites W3000471755 @default.
- W3147639821 cites W3006871679 @default.
- W3147639821 cites W3106114001 @default.
- W3147639821 cites W3111278072 @default.
- W3147639821 cites W4250955649 @default.
- W3147639821 doi "https://doi.org/10.1109/tnnls.2021.3069436" @default.
- W3147639821 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33830927" @default.
- W3147639821 hasPublicationYear "2022" @default.
- W3147639821 type Work @default.
- W3147639821 sameAs 3147639821 @default.
- W3147639821 citedByCount "5" @default.
- W3147639821 countsByYear W31476398212021 @default.
- W3147639821 countsByYear W31476398212022 @default.
- W3147639821 countsByYear W31476398212023 @default.
- W3147639821 crossrefType "journal-article" @default.
- W3147639821 hasAuthorship W3147639821A5009535551 @default.
- W3147639821 hasAuthorship W3147639821A5057898837 @default.
- W3147639821 hasAuthorship W3147639821A5084878606 @default.
- W3147639821 hasAuthorship W3147639821A5088197463 @default.
- W3147639821 hasConcept C104317684 @default.
- W3147639821 hasConcept C11413529 @default.
- W3147639821 hasConcept C119857082 @default.
- W3147639821 hasConcept C127964446 @default.
- W3147639821 hasConcept C154945302 @default.
- W3147639821 hasConcept C179799912 @default.
- W3147639821 hasConcept C185592680 @default.
- W3147639821 hasConcept C39890363 @default.
- W3147639821 hasConcept C41008148 @default.
- W3147639821 hasConcept C50644808 @default.
- W3147639821 hasConcept C55493867 @default.
- W3147639821 hasConcept C63479239 @default.
- W3147639821 hasConceptScore W3147639821C104317684 @default.
- W3147639821 hasConceptScore W3147639821C11413529 @default.
- W3147639821 hasConceptScore W3147639821C119857082 @default.
- W3147639821 hasConceptScore W3147639821C127964446 @default.
- W3147639821 hasConceptScore W3147639821C154945302 @default.
- W3147639821 hasConceptScore W3147639821C179799912 @default.
- W3147639821 hasConceptScore W3147639821C185592680 @default.
- W3147639821 hasConceptScore W3147639821C39890363 @default.
- W3147639821 hasConceptScore W3147639821C41008148 @default.
- W3147639821 hasConceptScore W3147639821C50644808 @default.
- W3147639821 hasConceptScore W3147639821C55493867 @default.
- W3147639821 hasConceptScore W3147639821C63479239 @default.
- W3147639821 hasFunder F4320321001 @default.
- W3147639821 hasIssue "10" @default.
- W3147639821 hasLocation W31476398211 @default.
- W3147639821 hasLocation W31476398212 @default.
- W3147639821 hasOpenAccess W3147639821 @default.