Matches in SemOpenAlex for { <https://semopenalex.org/work/W3147696564> ?p ?o ?g. }
- W3147696564 abstract "Visual re-localization means using a single image as input to estimate the camera's location and orientation relative to a pre-recorded environment. The highest-scoring methods are structure based, and need the query camera's intrinsics as an input to the model, with careful geometric optimization. When intrinsics are absent, methods vie for accuracy by making various other assumptions. This yields fairly good localization scores, but the models are narrow in some way, eg., requiring costly test-time computations, or depth sensors, or multiple query frames. In contrast, our proposed method makes few special assumptions, and is fairly lightweight in training and testing. Our pose regression network learns from only relative poses of training scenes. For inference, it builds a graph connecting the query image to training counterparts and uses a graph neural network (GNN) with image representations on nodes and image-pair representations on edges. By efficiently passing messages between them, both representation types are refined to produce a consistent camera pose estimate. We validate the effectiveness of our approach on both standard indoor (7-Scenes) and outdoor (Cambridge Landmarks) camera re-localization benchmarks. Our relative pose regression method matches the accuracy of absolute pose regression networks, while retaining the relative-pose models' test-time speed and ability to generalize to non-training scenes." @default.
- W3147696564 created "2021-04-13" @default.
- W3147696564 creator A5005404030 @default.
- W3147696564 creator A5016840801 @default.
- W3147696564 creator A5038405331 @default.
- W3147696564 creator A5049999878 @default.
- W3147696564 creator A5056030247 @default.
- W3147696564 date "2021-04-06" @default.
- W3147696564 modified "2023-10-07" @default.
- W3147696564 title "Visual Camera Re-Localization Using Graph Neural Networks and Relative Pose Supervision." @default.
- W3147696564 cites W1538701695 @default.
- W3147696564 cites W1616969904 @default.
- W3147696564 cites W1893935112 @default.
- W3147696564 cites W1979660104 @default.
- W3147696564 cites W1989476314 @default.
- W3147696564 cites W2033819227 @default.
- W3147696564 cites W2073761981 @default.
- W3147696564 cites W2081605477 @default.
- W3147696564 cites W2099443716 @default.
- W3147696564 cites W2103924867 @default.
- W3147696564 cites W2108598243 @default.
- W3147696564 cites W2139906443 @default.
- W3147696564 cites W2151103935 @default.
- W3147696564 cites W2179042386 @default.
- W3147696564 cites W2194775991 @default.
- W3147696564 cites W2200124539 @default.
- W3147696564 cites W2213387816 @default.
- W3147696564 cites W2216595815 @default.
- W3147696564 cites W2472269674 @default.
- W3147696564 cites W2495591376 @default.
- W3147696564 cites W2522940611 @default.
- W3147696564 cites W2556455135 @default.
- W3147696564 cites W2561074213 @default.
- W3147696564 cites W2593174349 @default.
- W3147696564 cites W2602709638 @default.
- W3147696564 cites W2605111497 @default.
- W3147696564 cites W2728498859 @default.
- W3147696564 cites W2737630486 @default.
- W3147696564 cites W2749379418 @default.
- W3147696564 cites W2770468159 @default.
- W3147696564 cites W2771385090 @default.
- W3147696564 cites W2795645133 @default.
- W3147696564 cites W2805516822 @default.
- W3147696564 cites W2883804845 @default.
- W3147696564 cites W2892805284 @default.
- W3147696564 cites W2892865870 @default.
- W3147696564 cites W2893142962 @default.
- W3147696564 cites W2898255154 @default.
- W3147696564 cites W2922243907 @default.
- W3147696564 cites W2962711740 @default.
- W3147696564 cites W2962767366 @default.
- W3147696564 cites W2963024893 @default.
- W3147696564 cites W2963053725 @default.
- W3147696564 cites W2963091558 @default.
- W3147696564 cites W2963210849 @default.
- W3147696564 cites W2963856988 @default.
- W3147696564 cites W2964015378 @default.
- W3147696564 cites W2964113829 @default.
- W3147696564 cites W2964121744 @default.
- W3147696564 cites W2964145825 @default.
- W3147696564 cites W2964175348 @default.
- W3147696564 cites W2964321699 @default.
- W3147696564 cites W2982681214 @default.
- W3147696564 cites W2983230029 @default.
- W3147696564 cites W2985516791 @default.
- W3147696564 cites W2987570663 @default.
- W3147696564 cites W2987672160 @default.
- W3147696564 cites W2997032998 @default.
- W3147696564 cites W3007117364 @default.
- W3147696564 cites W3010479006 @default.
- W3147696564 cites W3012164219 @default.
- W3147696564 cites W3034275286 @default.
- W3147696564 cites W3034579518 @default.
- W3147696564 cites W3035225512 @default.
- W3147696564 cites W3035397262 @default.
- W3147696564 cites W3035545045 @default.
- W3147696564 hasPublicationYear "2021" @default.
- W3147696564 type Work @default.
- W3147696564 sameAs 3147696564 @default.
- W3147696564 citedByCount "0" @default.
- W3147696564 crossrefType "posted-content" @default.
- W3147696564 hasAuthorship W3147696564A5005404030 @default.
- W3147696564 hasAuthorship W3147696564A5016840801 @default.
- W3147696564 hasAuthorship W3147696564A5038405331 @default.
- W3147696564 hasAuthorship W3147696564A5049999878 @default.
- W3147696564 hasAuthorship W3147696564A5056030247 @default.
- W3147696564 hasConcept C105795698 @default.
- W3147696564 hasConcept C132525143 @default.
- W3147696564 hasConcept C153180895 @default.
- W3147696564 hasConcept C154945302 @default.
- W3147696564 hasConcept C2776214188 @default.
- W3147696564 hasConcept C2908650547 @default.
- W3147696564 hasConcept C31972630 @default.
- W3147696564 hasConcept C33923547 @default.
- W3147696564 hasConcept C41008148 @default.
- W3147696564 hasConcept C50644808 @default.
- W3147696564 hasConcept C52102323 @default.
- W3147696564 hasConcept C80444323 @default.
- W3147696564 hasConcept C83546350 @default.
- W3147696564 hasConceptScore W3147696564C105795698 @default.